Bacillus thuringiensis subsp. israelensis Cyt1Aa synergizes Cry11Aa toxin by functioning as a membrane-bound receptor.
Ontology highlight
ABSTRACT: Bacillus thuringiensis subsp. israelensis produces crystal proteins, Cry (4Aa, 4Ba, 10Aa, and 11Aa) and Cyt (1Aa and 2Ba) proteins, toxic to mosquito vectors of human diseases. Cyt1Aa overcomes insect resistance to Cry11Aa and Cry4 toxins and synergizes the toxicity of these toxins. However, the molecular mechanism of synergism remains unsolved. Here, we provide evidence that Cyt1Aa functions as a receptor of Cry11Aa. Sequential-binding analysis of Cyt1Aa and Cry11Aa revealed that Cyt1Aa binding to Aedes aegypti brush border membrane vesicles enhanced the binding of biotinylated-Cry11Aa. The Cyt1Aa- and Cry11Aa-binding epitopes were mapped by means of the yeast two-hybrid system, peptide arrays, and heterologous competition assays with synthetic peptides. Two exposed regions in Cyt1Aa, loop beta6-alphaE and part of beta7, bind Cry11Aa. On the other side, Cry11Aa binds Cyt1Aa proteins by means of domain II-loop alpha8 and beta-4, which are also involved in midgut receptor interaction. Characterization of single-point mutations in Cry11Aa and Cyt1Aa revealed key Cry11Aa (S259 and E266) and Cyt1Aa (K198, E204 and K225) residues involved in the interaction of both proteins and in synergism. Additionally, a Cyt1Aa loop beta6-alphaE mutant (K198A) with enhanced synergism to Cry11Aa was isolated. Data provided here strongly indicates that Cyt1Aa synergizes or suppresses resistance to Cry11Aa toxin by functioning as a membrane-bound receptor. Bacillus thuringiensis subsp. israelensis is a highly effective pathogenic bacterium because it produces a toxin and also its functional receptor, promoting toxin binding to the target membrane and causing toxicity.
SUBMITTER: Perez C
PROVIDER: S-EPMC1317914 | biostudies-literature | 2005 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA