Tomato bushy stunt virus genomic RNA accumulation is regulated by interdependent cis-acting elements within the movement protein open reading frames.
Ontology highlight
ABSTRACT: This study on Tomato bushy stunt virus identified and defined three previously unknown regulatory sequences involved in RNA accumulation that are located within the 3'-proximal nested movement protein genes p22 and p19. The first is a 16-nucleotide (nt) element termed III-A that is positioned at the very 3' end of p22 and is essential for RNA accumulation. Approximately 300 nt upstream of III-A resides an approximately 80-nt inhibitory element (IE) that is obstructive to replication only in the absence of a third regulatory element of approximately 30 nt (SUR-III) that is positioned immediately upstream of III-A. Inspection of the nucleotide sequences predicted that III-A and SUR-III can form looped hairpins. A comparison of different tombusviruses showed, in each case, conservation for potential base pairing between the two predicted hairpin-loops. Insertion of a spacer adjacent to the predicted hairpins had no or a minimal effect on RNA accumulation, whereas an insertion in the putative III-A loop abolished genomic RNA multiplication. We conclude that the sequences composing the predicted III-A and SUR-III hairpin-loops are crucial for optimal RNA accumulation and that the inhibitory effect of IE surfaces when the alleged interaction between SUR-III and III-A is disturbed.
SUBMITTER: Park JW
PROVIDER: S-EPMC136688 | biostudies-literature | 2002 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA