Unknown

Dataset Information

0

The influence of amino acid protonation states on molecular dynamics simulations of the bacterial porin OmpF.


ABSTRACT: Several groups, including our own, have found molecular dynamics (MD) calculations to result in the size of the pore of an outer membrane bacterial porin, OmpF, to be reduced relative to its size in the x-ray crystal structure. At the narrowest portion of its pore, loop L3 was found to move toward the opposite face of the pore, resulting in decreasing the cross-section area by a factor of approximately 2. In an earlier work, we computed the protonation states of titratable residues for this system and obtained values different from those that had been used in previous MD simulations. Here, we show that MD simulations carried out with these recently computed protonation states accurately reproduce the cross-sectional area profile of the channel lumen in agreement with the x-ray structure. Our calculations include the investigation of the effect of assigning different protonation states to the one residue, D(127), whose protonation state could not be modeled in our earlier calculation. We found that both assumptions of charge states for D(127) reproduced the lumen size profile of the x-ray structure. We also found that the charged state of D(127) had a higher degree of hydration and it induced greater mobility of polar side chains in its vicinity, indicating that the apparent polarizability of the D(127) microenvironment is a function of the D(127) protonation state.

SUBMITTER: Varma S 

PROVIDER: S-EPMC1367011 | biostudies-literature | 2006 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

The influence of amino acid protonation states on molecular dynamics simulations of the bacterial porin OmpF.

Varma Sameer S   Chiu See-Wing SW   Jakobsson Eric E  

Biophysical journal 20050923 1


Several groups, including our own, have found molecular dynamics (MD) calculations to result in the size of the pore of an outer membrane bacterial porin, OmpF, to be reduced relative to its size in the x-ray crystal structure. At the narrowest portion of its pore, loop L3 was found to move toward the opposite face of the pore, resulting in decreasing the cross-section area by a factor of approximately 2. In an earlier work, we computed the protonation states of titratable residues for this syst  ...[more]

Similar Datasets

| S-EPMC3868647 | biostudies-literature
| S-EPMC3856478 | biostudies-literature
| S-EPMC3042589 | biostudies-literature
| S-EPMC3545085 | biostudies-literature
| S-EPMC6350074 | biostudies-literature
| S-EPMC2756365 | biostudies-literature
| S-EPMC1868976 | biostudies-literature
| S-EPMC2516885 | biostudies-literature
| S-EPMC8863314 | biostudies-literature
| S-EPMC9289141 | biostudies-literature