Project description:Avian influenza viruses (H5N1) of clades 2.3.4.1, 2.3.4.2, and 2.3.2.1 were introduced into Laos in 2009-2010. To investigate these viruses, we conducted active surveillance of poultry during March 2010. We detected viruses throughout Laos, including several interclade reassortants and 2 subgroups of clade 2.3.4, one of which caused an outbreak in May 2010.
Project description:Highly pathogenic H5N1 and low pathogenic H9N2 influenza viruses are endemic to poultry markets in Bangladesh and have cocirculated since 2008. H9N2 influenza viruses circulated constantly in the poultry markets, whereas highly pathogenic H5N1 viruses occurred sporadically, with peaks of activity in cooler months. Thirty highly pathogenic H5N1 influenza viruses isolated from poultry were characterized by antigenic, molecular, and phylogenetic analyses. Highly pathogenic H5N1 influenza viruses from clades 2.2.2 and 2.3.2.1 were isolated from live bird markets only. Phylogenetic analysis of the 30 H5N1 isolates revealed multiple introductions of H5N1 influenza viruses in Bangladesh. There was no reassortment between the local H9N2 influenza viruses and H5N1 genotype, despite their prolonged cocirculation. However, we detected two reassortant H5N1 viruses, carrying the M gene from the Chinese H9N2 lineage, which briefly circulated in the Bangladesh poultry markets and then disappeared. On the other hand, interclade reassortment occurred within H5N1 lineages and played a role in the genesis of the currently dominant H5N1 viruses in Bangladesh. Few 'human-like' mutations in H5N1 may account for the limited number of human cases. Antigenically, clade 2.3.2.1 H5N1 viruses in Bangladesh have evolved since their introduction and are currently mainly homogenous, and show evidence of recent antigenic drift. Although reassortants containing H9N2 genes were detected in live poultry markets in Bangladesh, these reassortants failed to supplant the dominant H5N1 lineage.
Project description:After high mortality rates among commercial poultry were reported in Egypt in 2017, we genetically characterized 4 distinct influenza A(H5N8) viruses isolated from poultry. Full-genome analysis indicated separate introductions of H5N8 clade 2.3.4.4 reassortants from Europe and Asia into Egypt, which poses a serious threat for poultry and humans.
Project description:Viral respiratory infections (VRIs) cause seasonal epidemics and pandemics, with their transmission influenced by climate conditions. Despite the risks posed by novel VRIs, the relationships between climate change and VRIs remain poorly understood. In this review, we synthesized existing literature to explore the connections between changes in meteorological conditions, extreme weather events, long-term climate warming, and seasonal outbreaks, epidemics, and pandemics of VRIs from an interdisciplinary perspective. We proposed a comprehensive conceptual framework highlighting the potential biological, socioeconomic, and ecological mechanisms underlying the impact of climate change on VRIs. Our findings suggested that climate change increases the risk of VRI emergence and transmission by affecting the biology of viruses, host susceptibility, human behavior, and environmental conditions of both society and ecosystems. Further interdisciplinary research is needed to address the dual challenge of climate change and pandemics.
Project description:IntroductionOnce established in the human population, the 2009 H1N1 pandemic virus (H1N1pdm09) was repeatedly introduced into swine populations globally with subsequent onward transmission among pigs.MethodsTo identify and characterize human-to-swine H1N1pdm09 introductions in Brazil, we conducted a large-scale phylogenetic analysis of 4,141 H1pdm09 hemagglutinin (HA) and 3,227 N1pdm09 neuraminidase (NA) gene sequences isolated globally from humans and swine between 2009 and 2022.ResultsPhylodynamic analysis revealed that during the period between 2009 and 2011, there was a rapid transmission of the H1N1pdm09 virus from humans to swine in Brazil. Multiple introductions of the virus were observed, but most of them resulted in self-limited infections in swine, with limited onward transmission. Only a few sustained transmission clusters were identified during this period. After 2012, there was a reduction in the number of human-to-swine H1N1pdm09 transmissions in Brazil.DiscussionThe virus underwent continuous antigenic drift, and a balance was established between swine-to-swine transmission and extinction, with minimal sustained onward transmission from humans to swine. These results emphasize the dynamic interplay between human-to-swine transmission, antigenic drift, and the establishment of swine-to-swine transmission in shaping the evolution and persistence of H1N1pdm09 in swine populations.
Project description:The 2009 H1N1 influenza A virus that has targeted not only those with chronic medical illness, the very young and old, but also a large segment of the patient population that has previously been afforded relative protection - those who are young, generally healthy, and immune naive. The illness is mild in most, but results in hospitalization and severe ARDS in an important minority. Among those who become critically ill, 20-40% will die, predominantly of severe hypoxic respiratory failure. However, and potentially in part due to the young age of those affected, intensive care with aggressive oxygenation support will allow most people to recover. The volume of patients infected and with critical illness placed substantial strain on the capacity of the health care system and critical care most specifically. Despite this, the 2009 pandemic has engaged our specialty and highlighted its importance like no other. Thus far, the national and global critical care response has been brisk, collaborative and helpful - not only for this pandemic, but for subsequent challenges in years ahead.
Project description:BACKGROUND: The 2009 H1N1 pandemic influenza dynamics in Italy was characterized by a notable pattern: as it emerged from the analysis of influenza-like illness data, after an initial period (September-mid-October 2009) characterized by a slow exponential increase in the weekly incidence, a sudden and sharp increase of the growth rate was observed by mid-October. The aim here is to understand whether spontaneous behavioral changes in the population could be responsible for such a pattern of epidemic spread. METHODOLOGY/PRINCIPAL FINDINGS: In order to face this issue, a mathematical model of influenza transmission, accounting for spontaneous behavioral changes driven by cost/benefit considerations on the perceived risk of infection, is proposed and validated against empirical epidemiological data. The performed investigation revealed that an initial overestimation of the risk of infection in the general population, possibly induced by the high concern for the emergence of a new influenza pandemic, results in a pattern of spread compliant with the observed one. This finding is also supported by the analysis of antiviral drugs purchase over the epidemic period. Moreover, by assuming a generation time of 2.5 days, the initially diffuse misperception of the risk of infection led to a relatively low value of the reproductive number , which increased to in the subsequent phase of the pandemic. CONCLUSIONS/SIGNIFICANCE: This study highlights that spontaneous behavioral changes in the population, not accounted by the large majority of influenza transmission models, can not be neglected to correctly inform public health decisions. In fact, individual choices can drastically affect the epidemic spread, by altering timing, dynamics and overall number of cases.
Project description:During winter 2020-2021, France and other European countries were severely affected by highly pathogenic avian influenza H5 viruses of the Gs/GD/96 lineage, clade 2.3.4.4b. In total, 519 cases occurred, mainly in domestic waterfowl farms in Southwestern France. Analysis of viral genomic sequences indicated that 3 subtypes of HPAI H5 viruses were detected (H5N1, H5N3, H5N8), but most French viruses belonged to the H5N8 subtype genotype A, as Europe. Phylogenetic analyses of HPAI H5N8 viruses revealed that the French sequences were distributed in 9 genogroups, suggesting 9 independent introductions of H5N8 from wild birds, in addition to the 2 introductions of H5N1 and H5N3.
Project description:The recent outbreaks of influenza A/H5N1 and 'swine influenza' A/H1N1 have caused global concern over the potential for a new influenza pandemic. Although it is impossible to predict when the next pandemic will occur, appropriate planning is still needed to maximize efficient use of resources and to minimize loss of life and productivity. Many tools now exist to assist countries in evaluating their plans but there is little to aid in writing of the plans. This study discusses the process of drafting a pandemic influenza preparedness plan for developing countries that conforms to the International Health Regulations of 2005 and recommendations of the World Health Organization. Stakeholders from many sectors should be involved in drafting a comprehensive pandemic influenza plan that addresses all levels of preparedness.