Unknown

Dataset Information

0

Biodirected epitaxial nanodeposition of polymers on oriented macromolecular templates.


ABSTRACT: Biodirected epitaxial nanodeposition of polymers was achieved on a template with an oriented molecular surface. Acetobacter xylinum synthesized a ribbon of cellulose I microfibrils onto a fixed, nematic ordered substrate of glucan chains with unique surface characteristics. The substrate directed the orientation of the motion due to the inverse force of the secretion during biosynthesis, and the microfibrils were aligned along the orientation of the molecular template. Using real-time video analysis, the patterns and rates of deposition were elucidated. Field emission scanning electron microscopy revealed that a strong molecular interaction allowed for the deposition of nascent biosynthesized 3.5-nm cellulose microfibrils with inter-microfibrillar spacings of 7-8 nm on the surface of the template. The cellulose was deposited parallel to the molecular orientation of the template. Directed cellulose synthesis and ordered movement of cells were observed only by using a nematic ordered substrate made from cellulose, and not from ordered crystalline cellulose substrates or ordered cellulose-related synthetic polymers such as polyvinyl alcohol. This unique relationship between directed biosynthesis and the ordered fabrication from the nano to the micro scales could lead to new methodologies for the design of functional materials with desired nanostructures.

SUBMITTER: Kondo T 

PROVIDER: S-EPMC137827 | biostudies-literature | 2002 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Biodirected epitaxial nanodeposition of polymers on oriented macromolecular templates.

Kondo Tetsuo T   Nojiri Masanobu M   Hishikawa Yukako Y   Togawa Eiji E   Romanovicz Dwight D   Brown R Malcolm RM  

Proceedings of the National Academy of Sciences of the United States of America 20021010 22


Biodirected epitaxial nanodeposition of polymers was achieved on a template with an oriented molecular surface. Acetobacter xylinum synthesized a ribbon of cellulose I microfibrils onto a fixed, nematic ordered substrate of glucan chains with unique surface characteristics. The substrate directed the orientation of the motion due to the inverse force of the secretion during biosynthesis, and the microfibrils were aligned along the orientation of the molecular template. Using real-time video anal  ...[more]

Similar Datasets

| S-EPMC9988655 | biostudies-literature
| S-EPMC4506999 | biostudies-literature
| S-EPMC9270429 | biostudies-literature
| S-EPMC7558330 | biostudies-literature
| S-EPMC4649745 | biostudies-literature
| S-EPMC10493259 | biostudies-literature
| S-EPMC10689499 | biostudies-literature
| S-EPMC8433776 | biostudies-literature
| S-EPMC6261905 | biostudies-other
| S-EPMC9565916 | biostudies-literature