Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers.
Ontology highlight
ABSTRACT: In shape-memory polymers, changes in shape are mostly induced by heating, and exceeding a specific switching temperature, T(switch). If polymers cannot be warmed up by heat transfer using a hot liquid or gaseous medium, noncontact triggering will be required. In this article, the magnetically induced shape-memory effect of composites from magnetic nanoparticles and thermoplastic shape-memory polymers is introduced. A polyetherurethane (TFX) and a biodegradable multiblock copolymer (PDC) with poly(p-dioxanone) as hard segment and poly(epsilon-caprolactone) as soft segment were investigated as matrix component. Nanoparticles consisting of an iron(III)oxide core in a silica matrix could be processed into both polymers. A homogeneous particle distribution in TFX could be shown. Compounds have suitable elastic and thermal properties for the shape-memory functionalization. Temporary shapes of TFX compounds were obtained by elongating at increased temperature and subsequent cooling under constant stress. Cold-drawing of PDC compounds at 25 degrees C resulted in temporary fixation of the mechanical deformation by 50-60%. The shape-memory effect of both composite systems could be induced by inductive heating in an alternating magnetic field (f = 258 kHz; H = 30 kA x m(-1)). The maximum temperatures achievable by inductive heating in a specific magnetic field depend on sample geometry and nanoparticle content. Shape recovery rates of composites resulting from magnetic triggering are comparable to those obtained by increasing the environmental temperature.
SUBMITTER: Mohr R
PROVIDER: S-EPMC1383650 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA