Unknown

Dataset Information

0

In vitro generated extracellular matrix and fluid shear stress synergistically enhance 3D osteoblastic differentiation.


ABSTRACT: This study instituted a unique approach to bone tissue engineering by combining effects of mechanical stimulation in the form of fluid shear stresses and the presence of bone-like extracellular matrix (ECM) on osteodifferentiation. Rat marrow stromal cells (MSCs) harvested from bone marrow were cultured on titanium (Ti) fiber mesh discs for 12 days in a flow perfusion system to generate constructs containing bone-like ECM. To observe osteodifferentiation and bone-like matrix deposition, these decellularized constructs and plain Ti fiber meshes were seeded with MSCs (Ti/ECM and Ti, respectively) and cultured in the presence of fluid shear stresses either with or without the osteogenic culture supplement dexamethasone. The calcium content, alkaline phosphatase activity, and osteopontin secretion were monitored as indicators of MSC differentiation. Ti/ECM constructs demonstrated a 75-fold increase in calcium content compared with their Ti counterparts after 16 days of culture. After 16 days, the presence of dexamethasone enhanced the effects of fluid shear stress and the bone-like ECM by increasing mineralization 50-fold for Ti/ECM constructs; even in the absence of dexamethasone, the Ti/ECM constructs exhibited approximately a 40-fold increase in mineralization compared with their Ti counterparts. Additionally, denatured Ti/ECM* constructs demonstrated a 60-fold decrease in calcium content compared with Ti/ECM constructs after 4 days of culture. These results indicate that the inherent osteoinductive potential of bone-like ECM along with fluid shear stresses synergistically enhance the osteodifferentiation of MSCs with profound implications on bone-tissue-engineering applications.

SUBMITTER: Datta N 

PROVIDER: S-EPMC1413766 | biostudies-literature | 2006 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

In vitro generated extracellular matrix and fluid shear stress synergistically enhance 3D osteoblastic differentiation.

Datta Néha N   Pham Quynh P QP   Sharma Upma U   Sikavitsas Vassilios I VI   Jansen John A JA   Mikos Antonios G AG  

Proceedings of the National Academy of Sciences of the United States of America 20060213 8


This study instituted a unique approach to bone tissue engineering by combining effects of mechanical stimulation in the form of fluid shear stresses and the presence of bone-like extracellular matrix (ECM) on osteodifferentiation. Rat marrow stromal cells (MSCs) harvested from bone marrow were cultured on titanium (Ti) fiber mesh discs for 12 days in a flow perfusion system to generate constructs containing bone-like ECM. To observe osteodifferentiation and bone-like matrix deposition, these de  ...[more]

Similar Datasets

| S-EPMC4769486 | biostudies-literature
| S-EPMC5734043 | biostudies-literature
| S-EPMC8671272 | biostudies-literature
| S-EPMC9025808 | biostudies-literature
| S-EPMC4744874 | biostudies-literature
| S-EPMC7056319 | biostudies-literature
| S-EPMC5865022 | biostudies-literature
| S-EPMC7384758 | biostudies-literature
| S-EPMC10656994 | biostudies-literature
| S-EPMC9581166 | biostudies-literature