Project description:The β-glucuronidase gene, uidA (GUS), has remained a favorite reporter gene in plants since its introduction in 1987 for its stability and versatility in a variety of fluorometric, spectrophotometric, and histochemical techniques. One of the most popular uses is as a reporter gene for visualizing endogenous promoter activities within plant tissues. Despite this popularity, specific protocols for minimizing nonrepresentative staining patterns, including false negatives, in challenging tissue types are not common. This became a large issue during our work on dark-grown Arabidopsis hypocotyls, and we set out to develop a protocol that would ensure accurate staining in a tissue that is biologically resistant to reagent penetration. Through extensive testing using a variety of constitutive and endogenous promoter::GUS fusion lines, we have developed an optimized GUS staining protocol that combines the use of acetone as a fixative, deliberate physical damage, and proper positive and negative controls to help ensure accurate staining along the hypocotyl while minimizing false negatives. Hopefully, our recommendations will allow for improved staining that more accurately reflects the true activity of cloned endogenous promoters and thus facilitate a more accurate understanding of promoter activity in Arabidopsis hypocotyls and other hard-to-stain tissues.
Project description:BackgroundThe beta-glucuronidase (GUS) gene reporter system is one of the most effective and employed techniques in the study of gene regulation in plant molecular biology. Improving protocols for GUS assays have rendered the original method described by Jefferson amenable to various requirements and conditions, but the serious limitation caused by inhibitors of the enzyme activity in plant tissues has thus far been underestimated.ResultsWe report that inhibitors of GUS activity are ubiquitous in organ tissues of Arabidopsis, tobacco and rice, and significantly bias quantitative assessment of GUS activity in plant transformation experiments. Combined with previous literature reports on non-model species, our findings suggest that inhibitors may be common components of plant cells, with variable affinity towards the E. coli enzyme. The reduced inhibitory capacity towards the plant endogenous GUS discredits the hypothesis of a regulatory role of these compounds in plant cells, and their effect on the bacterial enzyme is better interpreted as a side effect due to their interaction with GUS during the assay. This is likely to have a bearing also on histochemical analyses, leading to inaccurate evaluations of GUS expression.ConclusionsIn order to achieve reliable results, inhibitor activity should be routinely tested during quantitative GUS assays. Two separate methods to correct the measured activity of the transgenic and endogenous GUS are presented.
Project description:Increased fruit and vegetable (FV) intake is associated with decreased risk of nutrition-related chronic diseases. Sociodemographic disparities in FV intake indicate the need for strategies that promote equitable access to FVs. The United States Department of Agriculture's Gus Schumacher Nutrition Incentive Program (GusNIP) supports state and local programs that offer nutrition incentives (NIs) that subsidize purchase of FVs for people participating in the Supplemental Nutrition Assistance Program (SNAP). While a growing body of research indicates NIs are effective, the pathways through which GusNIP achieves its results have not been adequately described. We used an equity-focused, participatory process to develop a retrospective Theory of Change (TOC) to address this gap. We reviewed key program documents; conducted a targeted NI literature review; and engaged GusNIP partners, practitioners, and participants through interviews, workshops, and focus groups in TOC development. The resulting TOC describes how GusNIP achieves its long-term outcomes of increased participant FV purchases and intake and food security and community economic benefits. GusNIP provides NIs and promotes their use, helps local food retailers develop the capacity to sell FVs and accept NIs in accessible and welcoming venues, and supports local farmers to supply FVs to food retailers. The TOC is a framework for understanding how GusNIP works and a tool for improving and expanding the program.
Project description:Polyamine oxidases (PAOs) have been correlated with numerous physiological and developmental processes, as well as responses to biotic and abiotic stress conditions. Their transcriptional regulation is driven by signals generated by various developmental and environmental cues, including phytohormones. However, the inductive mechanism(s) of the corresponding genes remains elusive. Out of the five previously characterized Arabidopsis PAO genes, none of their regulatory sequences have been analyzed to date. In this study, a GUS reporter-aided promoter deletion approach was used to investigate the transcriptional regulation of AtPAO3 during normal growth and development as well as under various inductive environments. AtPAO3 contains an upstream open reading frame (uORF) and a short inter-cistronic sequence, while the integrity of both appears to be crucial for the proper regulation of gene expression. The full-length promoter contains several cis-acting elements that regulate the tissue-specific expression of AtPAO3 during normal growth and development. Furthermore, a number of TFBS that are involved in gene induction under various abiotic stress conditions display an additive effect on gene expression. Taken together, our data indicate that the transcription of AtPAO3 is regulated by multiple environmental factors, which probably work alongside hormonal signals and shed light on the fine-tuning mechanisms of PAO regulation.
Project description:BackgroundGal4 enhancer trap systems driving expression of LacZ and GFP reporters have been characterized and widely used in Drosophila. However, a Gal4 enhancer trap system in Arabidopsis has not been described in the primary literature. In Drosophila, the reporters possess a Gal4 upstream activation sequence (UAS) as five repeats (5XUAS) and lines that express Gal4 from tissue specific enhancers have also been used for the ectopic expression of any transgene (driven by a 5XUAS). While Gal4 transactivation has been demonstrated in Arabidopsis, wide use of a trap has not emerged in part because of the lack of detailed analysis, which is the purpose of the present study.ResultsA key feature of this study is the use of luciferase (LUC) as the primary reporter and rsGFP-GUS as secondary reporters. Reporters driven by a 5XUAS are better suited in Arabidopsis than those containing a 1X or 2X UAS. A 5XUAS-LUC reporter is expressed at high levels in Arabidopsis lines transformed with Gal4 driven by the full, enhanced 35S promoter. In contrast, a minimum 35S (containing the TATA region) upstream of Gal4 acts as an enhancer trap system. Luciferase expression in trap lines of the T1, T2, and T3 generations are generally stable but by the T4 generation approximately 25% of the lines are significantly silenced. This silencing is reversed by growing plants on media containing 5-aza-2'-deoxycytidine. Quantitative multiplex RT-PCR on the Gal4 and LUC mRNA indicate that this silencing can occur at the level of Gal4 or LUC transcription. Production of a 10,000 event library and observations on screening, along with the potential for a Gal4 driver system in other plant species are discussed.ConclusionThe Gal4 trap system described here uses the 5XUAS-LUC and 5XUAS rsGFP-GUS as reporters and allows for in planta quantitative screening, including the rapid monitoring for silencing. We conclude that in about 75% of the cases silencing is at the level of transcription of the Gal4 transgene and is at an acceptable frequency to make the Gal4 trap system in Arabidopsis of value. This system will be useful for the isolation and comprehensive characterization of specific reporter and driver lines.
Project description:The Gus Schumacher Nutrition Incentive Program (GusNIP) is a federally funded grant program that provides nutrition incentives-subsidies for purchasing fruits and vegetables (FV)-to Supplemental Nutrition Assistance Program (SNAP) participants. GusNIP currently advances nutrition equity by improving FV access for people with low incomes, yet inequities exist within GusNIP. We sought to identify inequities in GusNIP at the community, organization, partner, and individual levels and develop recommendations for farm bill provisions to make the program more equitable. In Spring 2021, a group of nutrition incentive experts (n = 11) from across the country convened to discuss opportunities to enhance equity in GusNIP. The iterative recommendation development process included feedback from key stakeholders (n = 15) and focus group participants with GusNIP lived experience (n = 12). Eleven recommendations to advance equity in GusNIP in the farm bill emerged across six categories: (1) increase total GusNIP funding, (2) increase funding and support to lower-resourced organizations and impacted communities, (3) eliminate the match requirement, (4) support statewide expansion, (5) expand and diversify retailer participation, and (6) expand program marketing. Including these recommendations in the upcoming and future farm bills would equitably expand GusNIP for SNAP participants, program grantees, and communities across the country.
Project description:PAM765 encodes the secretory protein of a phytopathogenic bacterium, Candidatus Phytoplasma asteris. To investigate the influence of PAM765 expression on the transcription profile of a host plant, we identified differences in the gene expression profiles between PAM765-transgenic and GUS-transgenic Arabidopsis plants using microarray analysis.
Project description:UDP-glucuronosyltransferases (UGTs) and β-glucuronidase (GUS) catalyze entirely distinct metabolism reactions. UGTs are responsible for the glucuronidation of a variety of drugs, endogenous and environmental chemicals, whereas GUS hydrolyzes glucuronides and liberates the parent substrates. Information on the overlap of ligand selectivity between UGT and GUS is essential for exploring the pharmacological or toxicological effects of the inhibitors of these two metabolic enzymes. This study is conducted to test whether UGTs and GUS share common ligands, by investigating the inhibitory effects towards E. coli GUS by a series of UGT typical substrates and inhibitors. Results showed that three typical ligands of UGTs, including two specific substrates (estradiol and trifluoperazine, E2 and TFP) and one selective inhibitor (magnolol, Mag), can inhibit the activity of GUS. Kinetic assays indicated that all the three UGT specific chemicals displayed competitive inhibition, with K i values of 31.4 (E2), 56.9 (TFP), and 16.6 μM (Mag). Docking studies further revealed that the three chemicals can enter the active sites of GUS by forming contacts with residues Glu-413, Trp-549, Asp-163, Tyr-472, Arg-562, or bound water. Our study indicates that ligand selectivity overlaps between UGTs and GUS, and some chemicals can act as co-inhibitors of these two metabolic enzymes. The pharmacological or toxicological effects of those co-inhibitors require further investigations.
Project description:The symbiosis between legumes and rhizobia results in the development of a new plant organ, the nodule. A role for polar auxin transport in nodule development in Medicago truncatula has been demonstrated using molecular genetic tools. The expression of a DR5::GUS auxin-responsive promoter in uninoculated M. truncatula roots mirrored that reported in Arabidopsis, and expression of the construct in nodulating roots confirmed results reported in white clover. The localization of a root-specific PIN protein (MtPIN2) in normal roots, developing lateral roots and nodules provided the first evidence that a PIN protein is expressed in nodules. Reduced levels of MtPIN2, MtPIN3, and MtPIN4 mRNAs via RNA interference demonstrated that plants with reduced expression of various MtPINs display a reduced number of nodules. The reported results show that in M. truncatula, PIN proteins play an important role in nodule development, and that nodules and lateral roots share some early auxin responses in common, but they rapidly differentiate with respect to auxin and MtPIN2 protein distribution.
Project description:Multilevel interactions of the plant hormones ethylene and auxin coordinately and synergistically regulate many aspects of plant growth and development. This study isolated the AUXIN RESISTANT1 (AUX1) allele aux1(rcr1) (RCR1 for REVERSING CTR1-10 ROOT1) that suppressed the root growth inhibition conferred by the constitutive ethylene-response constitutive triple response1-10 (ctr1-10) allele. The aux1(rcr1) mutation resulted from an L126F substitution at loop 2 of the plasma membrane-associated auxin influx carrier protein AUX1. aux1(rcr1) and the T-DNA insertion mutant aux1-T were both defective in auxin transport and many aspects of the auxin response. Unexpectedly, expression of the auxin-response reporter DR5:GUS in the root apex was substantially prevented by the aux1(rcr1) but not the aux1-T mutation, even in the presence of the wild-type AUX1 allele. Following treatment with the synthetic auxin 1-naphthaleneacetic acid (NAA), DR5:GUS expression in aux1(rcr1) and aux1-T occurred mainly in the root apex and mature zone. NAA-induced DR5:GUS expression in the root apex was markedly prevented by ethylene in genotypes with aux1(rcr1) but not in aux1-T genotypes and the wild type. The effect of aux1(rcr1) on DR5:GUS expression seemed to be associated with AUX1-expressing domains. Green fluorescence protein-fused aux1(rcr1) was localized in the cytoplasm and probably not to the plasma membrane, indicating important roles of the Lys(126) residue at loop 2 in AUX1 targeting. The possible effects of aux1(rcr1) on DR5:GUS expression are discussed.