Unknown

Dataset Information

0

Orientation of a beta-hairpin antimicrobial peptide in lipid bilayers from two-dimensional dipolar chemical-shift correlation NMR.


ABSTRACT: The orientation of a beta-sheet membrane peptide in lipid bilayers is determined, for the first time, using two-dimensional (2D) (15)N solid-state NMR. Retrocyclin-2 is a disulfide-stabilized cyclic beta-hairpin peptide with antibacterial and antiviral activities. We used 2D separated local field spectroscopy correlating (15)N-(1)H dipolar coupling with (15)N chemical shift to determine the orientation of multiply (15)N-labeled retrocyclin-2 in uniaxially aligned phosphocholine bilayers. Calculated 2D spectra exhibit characteristic resonance patterns that are sensitive to both the tilt of the beta-strand axis and the rotation of the beta-sheet plane from the bilayer normal and that yield resonance assignment without the need for singly labeled samples. Retrocyclin-2 adopts a transmembrane orientation in dilauroylphosphatidylcholine bilayers, with the strand axis tilted at 20 degrees +/- 10 degrees from the bilayer normal, but changes to a more in-plane orientation in thicker 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidyl-choline (POPC) bilayers with a tilt angle of 65 degrees +/- 15 degrees . These indicate that hydrophobic mismatch regulates the peptide orientation. The 2D spectra are sensitive not only to the peptide orientation but also to its backbone (phi, psi) angles. Neither a bent hairpin conformation, which is populated in solution, nor an ideal beta-hairpin with uniform (phi, psi) angles and coplanar strands, agrees with the experimental spectrum. Thus, membrane binding orders the retrocyclin conformation by reducing the beta-sheet curvature but does not make it ideal. (31)P NMR spectra of lipid bilayers with different compositions indicate that retrocyclin-2 selectively disrupts the orientational order of anionic membranes while leaving zwitteronic membranes intact. These structural results provide insights into the mechanism of action of this beta-hairpin antimicrobial peptide.

SUBMITTER: Tang M 

PROVIDER: S-EPMC1440742 | biostudies-literature | 2006 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Orientation of a beta-hairpin antimicrobial peptide in lipid bilayers from two-dimensional dipolar chemical-shift correlation NMR.

Tang Ming M   Waring Alan J AJ   Lehrer Robert I RI   Hong Mei M  

Biophysical journal 20060224 10


The orientation of a beta-sheet membrane peptide in lipid bilayers is determined, for the first time, using two-dimensional (2D) (15)N solid-state NMR. Retrocyclin-2 is a disulfide-stabilized cyclic beta-hairpin peptide with antibacterial and antiviral activities. We used 2D separated local field spectroscopy correlating (15)N-(1)H dipolar coupling with (15)N chemical shift to determine the orientation of multiply (15)N-labeled retrocyclin-2 in uniaxially aligned phosphocholine bilayers. Calcula  ...[more]

Similar Datasets

| S-EPMC6289736 | biostudies-literature
| S-EPMC6042476 | biostudies-other
| S-EPMC3967198 | biostudies-literature
| S-EPMC1637567 | biostudies-literature
| S-EPMC3160241 | biostudies-literature
| S-EPMC4894646 | biostudies-literature
| S-EPMC4406775 | biostudies-literature
| S-EPMC3682865 | biostudies-literature
| S-EPMC6788782 | biostudies-literature
| S-EPMC4744101 | biostudies-literature