Unknown

Dataset Information

0

Nonallelic interactions between het-c and a polymorphic locus, pin-c, are essential for nonself recognition and programmed cell death in Neurospora crassa.


ABSTRACT: Nonself recognition in filamentous fungi is conferred by genetic differences at het (heterokaryon incompatibility) loci. When individuals that differ in het specificity undergo hyphal fusion, the heterokaryon undergoes a programmed cell death reaction or is highly unstable. In Neurospora crassa, three allelic specificities at the het-c locus are conferred by a highly polymorphic domain. This domain shows trans-species polymorphisms indicative of balancing selection, consistent with the role of het loci in nonself recognition. We determined that a locus closely linked to het-c, called pin-c (partner for incompatibility with het-c) was required for het-c nonself recognition and heterokaryon incompatibility (HI). The pin-c alleles in isolates that differ in het-c specificity were extremely polymorphic. Heterokaryon and transformation tests showed that nonself recognition was mediated by synergistic nonallelic interactions between het-c and pin-c, while allelic interactions at het-c increased the severity of the HI phenotype. The pin-c locus encodes a protein containing a HET domain; predicted proteins containing HET domains are frequent in filamentous ascomycete genomes. These data suggest that nonallelic interactions may be important in nonself recognition in filamentous fungi and that proteins containing a HET domain may be a key factor in these interactions.

SUBMITTER: Kaneko I 

PROVIDER: S-EPMC1456284 | biostudies-literature | 2006 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Nonallelic interactions between het-c and a polymorphic locus, pin-c, are essential for nonself recognition and programmed cell death in Neurospora crassa.

Kaneko Isao I   Dementhon Karine K   Xiang Qijun Q   Glass N Louise NL  

Genetics 20060301 3


Nonself recognition in filamentous fungi is conferred by genetic differences at het (heterokaryon incompatibility) loci. When individuals that differ in het specificity undergo hyphal fusion, the heterokaryon undergoes a programmed cell death reaction or is highly unstable. In Neurospora crassa, three allelic specificities at the het-c locus are conferred by a highly polymorphic domain. This domain shows trans-species polymorphisms indicative of balancing selection, consistent with the role of h  ...[more]

Similar Datasets

| S-EPMC1569700 | biostudies-literature
| S-EPMC3454877 | biostudies-literature
| S-EPMC99559 | biostudies-literature
| S-EPMC1610276 | biostudies-literature
| S-EPMC1462268 | biostudies-other
| S-EPMC2988816 | biostudies-literature
| S-EPMC6893366 | biostudies-literature
| S-EPMC4000310 | biostudies-literature
| S-EPMC4038807 | biostudies-literature
| S-EPMC1140088 | biostudies-literature