Unknown

Dataset Information

0

A role for direct interactions in the modulation of rhodopsin by omega-3 polyunsaturated lipids.


ABSTRACT: Rhodopsin, the G protein-coupled receptor primarily responsible for sensing light, is found in an environment rich in polyunsaturated lipid chains and cholesterol. Biophysical experiments have shown that lipid unsaturation and cholesterol both have significant effects on rhodopsin's stability and function; omega-3 polyunsaturated chains, such as docosahexaenoic acid (DHA), destabilize rhodopsin and enhance the kinetics of the photocycle, whereas cholesterol has the opposite effect. Here, we use molecular dynamics simulations to investigate the possibility that polyunsaturated chains modulate rhodopsin stability and kinetics via specific direct interactions. By analyzing the results of 26 independent 100-ns simulations of dark-adapted rhodopsin, we found that DHA routinely forms tight associations with the protein in a small number of specific locations qualitatively different from the nonspecific interactions made by saturated chains and cholesterol. Furthermore, the presence of tightly packed DHA molecules tends to weaken the interhelical packing. These results are consistent with recent NMR work, which proposes that rhodopsin binds DHA, and they suggest a molecular rationale for DHA's effects on rhodopsin stability and kinetics.

SUBMITTER: Grossfield A 

PROVIDER: S-EPMC1458765 | biostudies-literature | 2006 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

A role for direct interactions in the modulation of rhodopsin by omega-3 polyunsaturated lipids.

Grossfield Alan A   Feller Scott E SE   Pitman Michael C MC  

Proceedings of the National Academy of Sciences of the United States of America 20060317 13


Rhodopsin, the G protein-coupled receptor primarily responsible for sensing light, is found in an environment rich in polyunsaturated lipid chains and cholesterol. Biophysical experiments have shown that lipid unsaturation and cholesterol both have significant effects on rhodopsin's stability and function; omega-3 polyunsaturated chains, such as docosahexaenoic acid (DHA), destabilize rhodopsin and enhance the kinetics of the photocycle, whereas cholesterol has the opposite effect. Here, we use  ...[more]

Similar Datasets

| S-EPMC5984976 | biostudies-literature
| S-EPMC10780507 | biostudies-literature
| S-EPMC2710298 | biostudies-literature
| S-EPMC4000111 | biostudies-literature
| S-EPMC4034522 | biostudies-literature
| S-EPMC7697266 | biostudies-literature
2024-11-25 | GSE279723 | GEO
| S-EPMC5996979 | biostudies-literature
| S-EPMC6917524 | biostudies-literature
| S-EPMC5677358 | biostudies-literature