Corticotropin-releasing hormone induces skin vascular permeability through a neurotensin-dependent process.
Ontology highlight
ABSTRACT: Many skin disorders are associated with increased numbers of activated mast cells and are worsened by stress; however, the mechanism underlying these processes is not understood. Corticotropin-releasing hormone (CRH) is secreted under stress from the hypothalamus, but also in the skin, where it induces mast cell activation and vascular permeability. We investigated the effect of CRH in a number of animal models by using i.v. Evans blue extravasation as a marker of vascular permeability. Intradermal CRH is among the most potent peptides at 100 nM, its effect being nearly comparable to that of neurotensin (NT). Pretreatment of skin injection sites with the NT receptor antagonist SR48692 blocks CRH-induced vascular permeability, which is diminished in NT-/- mice, implying that NT is necessary for the effect of CRH. CRH and NT precursor mRNA are shown to be expressed in both dorsal root ganglia and skin, whereas the latter also expresses mRNA for prohormone convertase 5, an enzyme that cleaves pro-NT into its active form. We also show that the effect of both CRH and NT is absent in W/W(v) mast cell-deficient mice; however, only a fraction of skin mast cells express CRH receptors, as shown by FACS analysis of CRH receptor (CRHR) and c-kit double-positive disaggregated mouse skin mast cells. These findings suggest that CRH induces skin vascular permeability through NT acting on mast cells and that both peptides should be considered in the pathogenesis of skin disorders exacerbated by stress.
SUBMITTER: Donelan J
PROVIDER: S-EPMC1472518 | biostudies-literature | 2006 May
REPOSITORIES: biostudies-literature
ACCESS DATA