Unknown

Dataset Information

0

Knockin mice expressing fluorescent delta-opioid receptors uncover G protein-coupled receptor dynamics in vivo.


ABSTRACT: The combination of fluorescent genetically encoded proteins with mouse engineering provides a fascinating means to study dynamic biological processes in mammals. At present, green fluorescent protein (GFP) mice were mainly developed to study gene expression patterns or cell morphology and migration. Here we used enhanced GFP (EGFP) to achieve functional imaging of a G protein-coupled receptor (GPCR) in vivo. We created mice where the delta-opioid receptor (DOR) is replaced by an active DOR-EGFP fusion. Confocal imaging revealed detailed receptor neuroanatomy throughout the nervous system of knock-in mice. Real-time imaging in primary neurons allowed dynamic visualization of drug-induced receptor trafficking. In DOR-EGFP animals, drug treatment triggered receptor endocytosis that correlated with the behavioral response. Mice with internalized receptors were insensitive to subsequent agonist administration, providing evidence that receptor sequestration limits drug efficacy in vivo. Direct receptor visualization in mice is a unique approach to receptor biology and drug design.

SUBMITTER: Scherrer G 

PROVIDER: S-EPMC1480468 | biostudies-literature | 2006 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Knockin mice expressing fluorescent delta-opioid receptors uncover G protein-coupled receptor dynamics in vivo.

Scherrer Grégory G   Tryoen-Tóth Petra P   Filliol Dominique D   Matifas Audrey A   Laustriat Delphine D   Cao Yu Q YQ   Basbaum Allan I AI   Dierich Andrée A   Vonesh Jean-Luc JL   Gavériaux-Ruff Claire C   Kieffer Brigitte L BL  

Proceedings of the National Academy of Sciences of the United States of America 20060609 25


The combination of fluorescent genetically encoded proteins with mouse engineering provides a fascinating means to study dynamic biological processes in mammals. At present, green fluorescent protein (GFP) mice were mainly developed to study gene expression patterns or cell morphology and migration. Here we used enhanced GFP (EGFP) to achieve functional imaging of a G protein-coupled receptor (GPCR) in vivo. We created mice where the delta-opioid receptor (DOR) is replaced by an active DOR-EGFP  ...[more]

Similar Datasets

| S-EPMC2635024 | biostudies-literature
| S-EPMC6618379 | biostudies-literature
| S-EPMC8707250 | biostudies-literature
| S-EPMC3775961 | biostudies-literature
| S-EPMC7854952 | biostudies-literature
| S-EPMC4698909 | biostudies-literature
| S-EPMC4168789 | biostudies-literature
| S-EPMC4240613 | biostudies-literature
| S-EPMC7573615 | biostudies-literature
| S-EPMC2865237 | biostudies-literature