Position-based scanning for comparative genomics and identification of genetic islands in Haemophilus influenzae type b.
Ontology highlight
ABSTRACT: Bacteria exhibit extensive genetic heterogeneity within species. In many cases, these differences account for virulence properties unique to specific strains. Several such loci have been discovered in the genome of the type b serotype of Haemophilus influenzae, a human pathogen able to cause meningitis, pneumonia, and septicemia. Here we report application of a PCR-based scanning procedure to compare the genome of a virulent type b (Hib) strain with that of the laboratory-passaged Rd KW20 strain for which a complete genome sequence is available. We have identified seven DNA segments or H. influenzae genetic islands (HiGIs) present in the type b genome and absent from the Rd genome. These segments vary in size and content and show signs of horizontal gene transfer in that their percent G+C content differs from that of the rest of the H. influenzae genome, they contain genes similar to those found on phages or other mobile elements, or they are flanked by DNA repeats. Several of these loci represent potential pathogenicity islands, because they contain genes likely to mediate interactions with the host. These newly identified genetic islands provide areas of investigation into both the evolution and pathogenesis of H. influenzae. In addition, the genome scanning approach developed to identify these islands provides a rapid means to compare the genomes of phenotypically diverse bacterial strains once the genome sequence of one representative strain has been determined.
SUBMITTER: Bergman NH
PROVIDER: S-EPMC148883 | biostudies-literature | 2003 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA