Unknown

Dataset Information

0

The AtC-VPS protein complex is localized to the tonoplast and the prevacuolar compartment in arabidopsis.


ABSTRACT: Plant cells contain several types of vacuoles with specialized functions. Although the biogenesis of these organelles is well understood at the morphological level, the machinery involved in plant vacuole formation is largely unknown. We have recently identified an Arabidopsis mutant, vcl1, that is deficient in vacuolar formation. VCL1 is homologous to a protein that regulates membrane fusion at the tonoplast in yeast. On the basis of these observations, VCL1 is predicted to play a direct role in vacuolar biogenesis and vesicular trafficking to the vacuole in plants. In this work, we show that VCL1 forms a complex with AtVPS11 and AtVPS33 in vivo. These two proteins are homologues of proteins that have a well-characterized role in membrane fusion at the tonoplast in yeast. VCL1, AtVPS11, and AtVPS33 are membrane-associated and cofractionate with tonoplast and denser endomembrane markers in subcellular fractionation experiments. Consistent with this, VCL1, AtVPS11, and AtVPS33 are found on the tonoplast and the prevacuolar compartment (PVC) by immunoelectron microscopy. We also show that a VCL1-containing complex includes SYP2-type syntaxins and is most likely involved in membrane fusion on both the PVC and tonoplast in vivo. VCL1, AtVPS11, and AtVPS33 are the first components of the vacuolar biogenesis machinery to be identified in plants.

SUBMITTER: Rojo E 

PROVIDER: S-EPMC149977 | biostudies-literature | 2003 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

The AtC-VPS protein complex is localized to the tonoplast and the prevacuolar compartment in arabidopsis.

Rojo Enrique E   Zouhar Jan J   Kovaleva Valentina V   Hong Seho S   Raikhel Natasha V NV  

Molecular biology of the cell 20030201 2


Plant cells contain several types of vacuoles with specialized functions. Although the biogenesis of these organelles is well understood at the morphological level, the machinery involved in plant vacuole formation is largely unknown. We have recently identified an Arabidopsis mutant, vcl1, that is deficient in vacuolar formation. VCL1 is homologous to a protein that regulates membrane fusion at the tonoplast in yeast. On the basis of these observations, VCL1 is predicted to play a direct role i  ...[more]

Similar Datasets

| S-EPMC21437 | biostudies-literature
| S-EPMC4664880 | biostudies-literature
| S-EPMC5526873 | biostudies-literature
| S-EPMC3697461 | biostudies-literature
| S-EPMC2784467 | biostudies-literature
| S-EPMC3817529 | biostudies-literature
| S-EPMC2651462 | biostudies-literature
| S-EPMC2575161 | biostudies-literature
| S-EPMC4783361 | biostudies-literature
| S-EPMC7414185 | biostudies-literature