Ligand orientation control in low-spin six-coordinate (porphinato)iron(II) species.
Ontology highlight
ABSTRACT: The synthesis of a low-spin six-coordinate iron(II) porphyrinate in which the two axial ligands are forced to have a relative perpendicular orientation has been successfully accomplished for the first time. The reaction of four-coordinate (tetramesitylporphinato)iron(II) with 2-methylimidazole leads to the preparation of [Fe(TMP)(2-MeHIm)(2)] which cocrystallizes with five-coordinate [Fe(TMP)(2-MeHIm)]. The six-coordinate complex accommodates the sterically crowded pair of imidazoles with a strongly ruffled core and relative perpendicular orientation. This leads to shortened equatorial bonds of 1.963(6) A and slightly elongated axial Fe-N bond lengths of 2.034(9) A that are about 0.04 A shorter and 0.03 A longer, respectively, in comparison to those of the bis-imidazole-ligated iron(II) species with parallel oriented axial ligands. The Mossbauer spectrum shows a pair of quadrupole doublets that can be assigned to the components of the cocrystallized crystalline solid. High-spin five-coordinate [Fe(TMP)(2-MeHIm)] has DeltaE(Q) = 2.25 mm/s and delta = 0.90 mm/s at 15 K. The quadrupole splitting, DeltaE(Q), for [Fe(TMP)(2-MeHIm)(2)] is 1.71 mm/s, and the isomer shift is 0.43 mm/s at 15 K. The quadrupole splitting value is significantly larger than that found for low-spin iron(II) derivatives with relative parallel orientations for the two axial ligands. Mossbauer spectra thus provide a probe for ligand orientation when structural data are otherwise not available.
SUBMITTER: Hu C
PROVIDER: S-EPMC1502394 | biostudies-literature | 2005 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA