Project description:BackgroundDemand for cholesterol is high in certain cancers making them potentially sensitive to therapeutic strategies targeting cellular cholesterol homoeostasis. A potential approach involves disruption of intracellular cholesterol transport, which occurs in Niemann-Pick disease as a result of acid sphingomyelinase (ASM) deficiency. Hence, a class of lysosomotropic compounds that were identified as functional ASM inhibitors (FIASMAs) might exhibit chemotherapeutic activity by disrupting cancer cell cholesterol homoeostasis.MethodsHere, the chemotherapeutic utility of ASM inhibition was investigated. The effect of FIASMAs on intracellular cholesterol levels, cholesterol homoeostasis, cellular endocytosis and signalling cascades were investigated. The in vivo efficacy of ASM inhibition was demonstrated using melanoma xenografts and a nanoparticle formulation was developed to overcome dose-limiting CNS-associated side effects of certain FIASMAs.ResultsFunctional ASM inhibitors inhibited intracellular cholesterol transport leading to disruption of autophagic flux, cellular endocytosis and receptor tyrosine kinase signalling. Consequently, major oncogenic signalling cascades on which cancer cells were reliant for survival were inhibited. Two tested ASM inhibitors, perphenazine and fluphenazine that are also clinically used as antipsychotics, were effective in inhibiting xenografted tumour growth. Nanoliposomal encapsulation of the perphenazine enhanced its chemotherapeutic efficacy while decreasing CNS-associated side effects.ConclusionsThis study suggests that disruption of intracellular cholesterol transport by targeting ASM could be utilised as a potential chemotherapeutic approach for treating cancer.
Project description:Niemann-Pick C1-like 1 (NPC1L1) is essential for intestinal cholesterol absorption. Together with the cholesterol-rich and Flotillin-positive membrane microdomain, NPC1L1 is internalized via clathrin-mediated endocytosis and transported to endocytic recycling compartment (ERC). When ERC cholesterol level decreases, NPC1L1 interacts with LIMA1 and moves back to plasma membrane. However, how cholesterol leaves ERC is unknown. Here, we find that, in male mice, intracellular bile acids facilitate cholesterol transport to other organelles, such as endoplasmic reticulum, in a non-micellar fashion. When cholesterol level in ERC is decreased by bile acids, the NPC1L1 carboxyl terminus that previously interacts with the cholesterol-rich membranes via the A1272LAL residues dissociates from membrane, exposing the Q1277KR motif for LIMA1 recruitment. Then NPC1L1 moves back to plasma membrane. This study demonstrates an intracellular cholesterol transport function of bile acids and explains how the substantial amount of cholesterol in NPC1L1-positive compartments is unloaded in enterocytes during cholesterol absorption.
Project description:Leelamine is a promising compound for the treatment of cancer; however, the molecular mechanisms leading to leelamine-mediated cell death have not been identified. This report shows that leelamine is a weakly basic amine with lysosomotropic properties, leading to its accumulation inside acidic organelles such as lysosomes. This accumulation leads to homeostatic imbalance in the lysosomal endosomal cell compartments that disrupts autophagic flux and intracellular cholesterol trafficking as well as receptor-mediated endocytosis. Electron micrographs of leelamine-treated cancer cells displayed accumulation of autophagosomes, membrane whorls, and lipofuscin-like structures, indicating disruption of lysosomal cell compartments. Early in the process, leelamine-mediated killing was a caspase-independent event triggered by cholesterol accumulation, as depletion of cholesterol using β-cyclodextrin treatment attenuated the cell death and restored the subcellular structures identified by electron microscopy. Protein microarray-based analyses of the intracellular signaling cascades showed alterations in RTK-AKT/STAT/MAPK signaling cascades, which was subsequently confirmed by Western blotting. Inhibition of Akt, Erk, and Stat signaling, together with abnormal deregulation of receptor tyrosine kinases, was caused by the inhibition of receptor-mediated endocytosis. This study is the first report demonstrating that leelamine is a lysosomotropic, intracellular cholesterol transport inhibitor with potential chemotherapeutic properties leading to inhibition of autophagic flux and induction of cholesterol accumulation in lysosomal/endosomal cell compartments. Importantly, the findings of this study show the potential of leelamine to disrupt cholesterol homeostasis for treatment of advanced-stage cancers.
Project description:BackgroundAutophagy is an intracellular degradation process crucial for homeostasis. During autophagy, a double-membrane autophagosome fuses with lysosome through SNARE machinery STX17 to form autolysosome for degradation of damaged organelle. Whereas defective autophagy enhances cholesterol accumulation in the lysosome and impaired autophagic flux that results Niemann-Pick type C1 (NPC1) disease. However, exact interconnection between NPC1 and autophagic flux remain obscure due to the existence of controversial reports.ResultsThis study aimed at a comparison of the effects of three autophagic inhibitor drugs, including chloroquine, U18666A, and bafilomycin A1, on the intracellular cholesterol transport and autophagy flux. Chloroquine, an autophagic flux inhibitor; U1866A, a NPC1 inhibitor, and bafilomycin A, a lysosomotropic agent are well known to inhibit autophagy by different mechanism. Here we showed that treatment with U1866A and bafilomycin A induces lysosomal cholesterol accumulation that prevented autophagic flux by decreasing autophagosome-lysosome fusion. We also demonstrated that accumulation of cholesterol within the lysosome did not affect lysosomal pH. Although the clearance of accumulated cholesterol by cyclodextrin restored the defective autophagosome-lysosome fusion, the autophagy flux restoration was possible only when lysosomal acidification was not altered. In addition, a failure of STX17 trafficking to autophagosomes plays a key role in prevention of autophagy flux caused by intracellular cholesterol transport inhibitors.ConclusionsOur data provide a new insight that the impaired autophagy flux does not necessarily result in lysosomal cholesterol accumulation even though it prevents autophagosome-lysosome fusion. Video abstract.
Project description:Leelamine is an anticancer chemotherapeutic agent inhibiting intracellular cholesterol transport. Cell death mediated by leelamine occurs due to the lysosomotropic property of the compound, its accumulation in the lysosome, and inhibition of cholesterol transport leading to lack of availability for key processes required for functioning of cancer cells. The present study dissects the structure-activity-relationship of leelamine using synthesized derivatives of leelamine and abietic acid, a structurally similar compound, to identify the moiety responsible for anti-cancer activity. Similar to leelamine, all active derivatives had an amino group or a similar moiety that confers a lysosomotropic property to the compound enabling its accumulation in the lysosome. Active derivatives inhibited intracellular cholesterol transport and hindered xenografted melanoma tumor development without obvious systemic toxicity. In silico studies suggested that active derivatives accumulating in lysosomes bound to NPC1, a protein responsible for cholesterol export from the lysosome, to inhibit its activity that then caused accumulation, and lack of cholesterol availability for other key cellular activities. Thus, active derivatives of leelamine or abietic acid maintained lysosomotropic properties, bound to NPC1, and disrupted cellular cholesterol transport as well as availability to retard tumor development.
Project description:The cholesterol storage disorder Niemann-Pick type C (NPC) disease is caused by defects in either of two late endosomal/lysosomal proteins, NPC1 and NPC2. NPC2 is a 16-kDa soluble protein that binds cholesterol in a 1:1 stoichiometry and can transfer cholesterol between membranes by a mechanism that involves protein-membrane interactions. To examine the structural basis of NPC2 function in cholesterol trafficking, a series of point mutations were generated across the surface of the protein. Several NPC2 mutants exhibited deficient sterol transport properties in a set of fluorescence-based assays. Notably, these mutants were also unable to promote egress of accumulated intracellular cholesterol from npc2(-/-) fibroblasts. The mutations mapped to several regions on the protein surface, suggesting that NPC2 can bind to more than one membrane simultaneously. Indeed, we have previously demonstrated that WT NPC2 promotes vesicle-vesicle interactions. These interactions were abrogated, however, by mutations causing defective sterol transfer properties. Molecular modeling shows that NPC2 is highly plastic, with several intense positively charged regions across the surface that could interact favorably with negatively charged membrane phospholipids. The point mutations generated in this study caused changes in NPC2 surface charge distribution with minimal conformational changes. The plasticity, coupled with membrane flexibility, probably allows for multiple cholesterol transfer routes. Thus, we hypothesize that, in part, NPC2 rapidly traffics cholesterol between closely appositioned membranes within the multilamellar interior of late endosomal/lysosomal proteins, ultimately effecting cholesterol egress from this compartment.
Project description:We have studied the effect of lipid-free human plasma apolipoprotein A-I (apoA-I) on the transport of newly synthesized cholesterol to cell-surface cholesterol-rich domains, which in human skin fibroblasts are mainly represented by caveolae. Changes in transport of newly synthesized cholesterol were assessed after labelling cells with [(14)C]acetate at 15 degrees C and warming cells to permit the transfer of cholesterol, followed by the selective oxidation of cholesterol in cholesterol-rich domains (caveolae) in the plasma membrane before their partial purification. ApoA-I, but not BSA added in an equimolar concentration, enhanced the transport of cholesterol to the caveolae up to 5-fold in a dose- and time-dependent manner. The effect of apoA-I on cholesterol transport exceeded its effect on cholesterol efflux, resulting in an accumulation of intracellular cholesterol in caveolae. Methyl-beta-cyclodextrin, added at a concentration promoting cholesterol efflux to the same extent as apoA-I, also stimulated cholesterol trafficking, but was 3-fold less effective than apoA-I. Progesterone inhibited the transport of newly synthesized cholesterol to the caveolae. Treatment of cells with apoA-I stimulated the expression of caveolin, increasing the amount of caveolin protein and mRNA by approx. 2-fold. We conclude that apoA-I induces the transport of intracellular cholesterol to cell-surface caveolae, possibly in part through the stimulation of caveolin expression.
Project description:Cholesterol initiates steroid metabolism in adrenal and gonadal mitochondria, which is essential for all mammalian survival. During stress an increased cholesterol transport rapidly increases steroidogenesis; however, the mechanism of mitochondrial cholesterol transport is unknown. Using rat testicular tissue and mouse Leydig (MA-10) cells, we report for the first time that mitochondrial translocase of outer mitochondrial membrane (OMM), Tom40, is central in cholesterol transport. Cytoplasmic cholesterol-lipids complex containing StAR protein move from the mitochondria-associated ER membrane (MAM) to the OMM, increasing cholesterol load. Tom40 interacts with StAR at the OMM increasing cholesterol transport into mitochondria. An absence of Tom40 disassembles complex formation and inhibits mitochondrial cholesterol transport and steroidogenesis. Therefore, Tom40 is essential for rapid mitochondrial cholesterol transport to initiate, maintain, and regulate activity.
Project description:Cholesterol is a critical component of cell membranes, and cellular cholesterol levels and distribution are tightly regulated in mammals. Recent evidence has revealed a critical role for pancreatic beta cell-specific cholesterol homeostasis in insulin secretion as well as in beta cell dysfunction in diabetes and the metabolic response to thiazolidinediones (TZDs), which are antidiabetic drugs. The ATP-binding cassette transporter G1 (ABCG1) has been shown to play a role in cholesterol efflux, but its role in beta cells is currently unknown. In other cell types, ABCG1 expression is downregulated in diabetes and upregulated by TZDs. Here we have demonstrated an intracellular role for ABCG1 in beta cells. Loss of ABCG1 expression impaired insulin secretion both in vivo and in vitro, but it had no effect on cellular cholesterol content or efflux. Subcellular localization studies showed the bulk of ABCG1 protein to be present in insulin granules. Loss of ABCG1 led to altered granule morphology and reduced granule cholesterol levels. Administration of exogenous cholesterol restored granule morphology and cholesterol content and rescued insulin secretion in ABCG1-deficient islets. These findings suggest that ABCG1 acts primarily to regulate subcellular cholesterol distribution in mouse beta cells. Furthermore, islet ABCG1 expression was reduced in diabetic mice and restored by TZDs, implicating a role for regulation of islet ABCG1 expression in diabetes pathogenesis and treatment.
Project description:The delivery of intracellular material within cells is crucial for maintaining normal function. Myosins transport a wide variety of cargo, ranging from vesicles to ribonuclear protein particles (RNPs), in plants, fungi, and metazoa. The properties of a given myosin transporter are adapted to move on different actin filament tracks, either on the disordered actin networks at the cell cortex or along highly organized actin bundles to distribute their cargo in a localized manner or move it across long distances in the cell. Transport is controlled by selective recruitment of the myosin to its cargo that also plays a role in activation of the motor.