Ontology highlight
ABSTRACT: Background
The two human cerebral hemispheres are continuously interacting, through excitatory and inhibitory influences and one critical structure subserving this interhemispheric balance is the corpus callosum. Interhemispheric neurophysiological abnormalities and intrahemispheric behavioral impairments have been reported in individuals lacking the corpus callosum. The aim of this study was to examine intrahemispheric neurophysiological function in primary motor cortex devoid of callosal projections.Methods
Intracortical excitatory and inhibitory systems were tested in three individuals with complete agenesis of the corpus callosum and sixteen healthy individuals. These systems were assessed using transcranial magnetic stimulation (TMS) protocols: motor threshold at rest, paired-pulse curve, and cortical silent period.Results
TMS revealed no difference between the patient and control groups on the motor threshold measure, as well as intracortical facilitation and intracortical inhibition systems as tested by paired stimulation. However, intrahemispheric inhibitory function was found to be abnormal in participants without callosal projections, as the cortical silent period duration was significantly increased in the patient group.Conclusion
These data suggest that in addition to previously reported impaired interhemispheric function, patients lacking the entire corpus callosum also display abnormal intrahemispheric excitability of the primary motor cortex.
SUBMITTER: Fecteau S
PROVIDER: S-EPMC1513595 | biostudies-literature | 2006 Jun
REPOSITORIES: biostudies-literature
Fecteau Shirley S Lassonde Maryse M Théoret Hugo H
BMC neurology 20060621
<h4>Background</h4>The two human cerebral hemispheres are continuously interacting, through excitatory and inhibitory influences and one critical structure subserving this interhemispheric balance is the corpus callosum. Interhemispheric neurophysiological abnormalities and intrahemispheric behavioral impairments have been reported in individuals lacking the corpus callosum. The aim of this study was to examine intrahemispheric neurophysiological function in primary motor cortex devoid of callos ...[more]