Mechano-oxidative coupling by mitochondria induces proinflammatory responses in lung venular capillaries.
Ontology highlight
ABSTRACT: Elevation of lung capillary pressure causes exocytosis of the leukocyte adhesion receptor P-selectin in endothelial cells (ECs), indicating that lung ECs generate a proinflammatory response to pressure-induced stress. To define underlying mechanisms, we followed the EC signaling sequence leading to P-selectin exocytosis through application of real-time, in situ fluorescence microscopy in lung capillaries. Pressure elevation increased the amplitude of cytosolic Ca(2+) oscillations that triggered increases in the amplitude of mitochondrial Ca(2+) oscillations and in reactive oxygen species (ROS) production. Responses to blockers of the Ca(2+) oscillations and of mitochondrial electron transport indicated that the ROS production was Ca(2+) dependent and of mitochondrial origin. A new proinflammatory mechanism was revealed in that pressure-induced exocytosis of P-selectin was inhibited by both antioxidants and mitochondrial inhibitors, indicating that the exocytosis was driven by mitochondrial ROS. In this signaling pathway mitochondria coupled pressure-induced Ca(2+) oscillations to the production of ROS that in turn acted as diffusible messengers to activate P-selectin exocytosis. These findings implicate mitochondrial mechanisms in the lung's proinflammatory response to pressure elevation and identify mitochondrial ROS as critical to P-selectin exocytosis in lung capillary ECs.
SUBMITTER: Ichimura H
PROVIDER: S-EPMC151903 | biostudies-literature | 2003 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA