Involvement of two putative alternative sigma factors in stress response of the radioresistant bacterium Deinococcus radiodurans.
Ontology highlight
ABSTRACT: Two genes bearing similarity to alternative sigma factors were identified in the Deinococcus radiodurans genome sequence and designated sig1 and sig2. These genes were cloned and inactivated, and both were found to be important for survival during heat and ethanol stress, although the sig1 mutants displayed a more severe phenotype than the sig2 mutants. Reporter gene fusions to the groESL and dnaKJ operons transformed into these mutant backgrounds indicated that sig1 is required for the heat shock induction of groESL and dnaKJ, whereas sig2 mutants show a more moderate defect in dnaKJ induction and are not impaired for groESL induction. Essentiality tests suggested that neither sig1 nor sig2 is essential under all conditions. Sequence comparisons demonstrated that the sig1 gene product is classed distinctly with extracytoplasmic function (ECF) sigma factors, whereas Sig2 appears to be a more divergent sigma factor ortholog. These results suggest that sig1 encodes the major ECF-derived heat shock sigma factor in D. radiodurans and that it plays a central role in the positive regulation of heat shock genes. sig2, in contrast, appears to play a more minor role in heat shock protection and may serve to modulate the expression of some heat protective genes.
SUBMITTER: Schmid AK
PROVIDER: S-EPMC151957 | biostudies-literature | 2002 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA