Linkage between cellular communications, energy utilization, and proliferation in metastatic neuroendocrine cancers.
Ontology highlight
ABSTRACT: To identify metabolic features that support the aggressive behavior of human neuroendocrine (NE) cancers, we examined metastatic prostate NE tumors and derived prostate NE cancer (PNEC) cell lines from a transgenic mouse model using a combination of magic angle spinning NMR spectroscopy, in silico predictions of biotransformations that observed metabolites may undergo, biochemical tests of these predictions, and electrophysiological/calcium imaging studies. Malignant NE cells undergo excitation and increased proliferation when their GABA(A), glutamate, and/or glycine receptors are stimulated, use glutamate and GABA as substrates for NADH biosynthesis, and produce propylene glycol, a precursor of pyruvate derived from glycine that increases levels of circulating free fatty acids through extra-NE cell effects. Treatment of nude mice containing PNEC tumor xenografts with (i) amiloride, a diuretic that inhibits Abp1, an enzyme involved in NE cell GABA metabolism, (ii) carbidopa, an inhibitor of dopa decarboxylase which functions upstream of Abp1, plus (iii) flumazenil, a benzodiazepine antagonist that binds to GABA(A) receptors, leads to significant reductions in tumor growth. These findings may be generally applicable: GeneChip data sets from 471 human neoplasms revealed that components of GABA metabolic pathways, including ABP1, exhibit statistically significant increases in their expression in NE and non-NE cancers.
SUBMITTER: Ippolito JE
PROVIDER: S-EPMC1533883 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA