Exposure to salt and organic acids increases the ability of Listeria monocytogenes to invade Caco-2 cells but decreases its ability to survive gastric stress.
Ontology highlight
ABSTRACT: The effects of environmental stress exposure on Listeria monocytogenes growth and virulence-associated characteristics were investigated. Specifically, we measured the effects of temperature (7 or 37 degrees C), pH (5.5 or 7.4), the presence of salt and organic acids (375 mM NaCl, 8.45 mM sodium diacetate [SD], 275 mM sodium lactate [SL], or a combination of NaCl, SD, and SL), and deletion of sigB, which encodes a key stress response regulator, on the ability of L. monocytogenes to grow, invade Caco-2 cells, and survive exposure to synthetic gastric fluid (pH 2.5 or 4.5). Our results indicate that (i) L. monocytogenes log-phase generation times and maximum cell numbers are not dependent on the alternative sigma factor sigmaB in the presence of NaCl and organic acids at concentrations typically found in foods; (ii) growth inhibition of L. monocytogenes through the addition of organic acids is pH dependent; (iii) the ability of L. monocytogenes to invade Caco-2 cells is affected by growth phase, temperature, and the presence of salt and organic acids, with the highest relative invasion capabilities observed for cells grown with SL or NaCl at 37 degrees C and pH 7.4; (iv) growth of L. monocytogenes in the presence of NaCl, SD, or SL reduces its ability to survive exposure to gastric fluid; and (v) exposure of L. monocytogenes to gastric fluid reduces the enhanced invasiveness caused by growth in the presence of NaCl or SL. These findings suggest that virulence-associated characteristics that determine the L. monocytogenes infectious dose are likely to be affected by food-specific properties (e.g., pH or the presence of salt or organic acid).
SUBMITTER: Garner MR
PROVIDER: S-EPMC1538756 | biostudies-literature | 2006 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA