The identification of markers segregating with resistance to Schistosoma mansoni infection in the snail Biomphalaria glabrata.
Ontology highlight
ABSTRACT: Both snail and parasite genes determine the susceptibility of the snail Biomphalaria glabrata to infection with the trematode Schistosoma mansoni. To identify molecular markers associated with resistance to the parasite in the snail host, we performed genetic crosses between parasite-resistant and -susceptible isogenic snails. Because resistance to infection in adult snails is controlled by a single locus, DNA samples from individual F2 and F1 backcross progeny, segregating for either the resistant or susceptible phenotypes, were pooled (bulked segregant). Genotypes for both parents were determined with 205 arbitrary decamer primers by random amplified polymorphic DNA-PCR. Of the 205 primers, 144 were informative, and the relative allele frequencies between the pools for these primers were determined. Two primers, OPM-04 and OPZ-11, produced fragments in the resistant parent of one cross that were inherited in a dominant fashion in the resistant F2 and backcross-bulked segregant progeny. Subsequent typing of DNA samples of individual progeny snails showed that the 1.2-kb marker amplified by primer OPM-04 and the 1.0-kb marker produced by primer OPZ-11 segregated in the same dominant fashion with the resistant phenotype. Sequence analysis of the 1.2-kb marker showed that it corresponds to a repetitive sequence in the snail genome with no homology to existing DNA sequences in the public databases. Analysis of the 1. 0-kb marker showed that it also corresponds to a repetitive sequence in the B. glabrata genome that contains an imperfect ORF, with homology to retrovirus-related group-specific antigens (gag) polyprotein.
SUBMITTER: Knight M
PROVIDER: S-EPMC15498 | biostudies-literature | 1999 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA