Project description:Study objectivesRecent genome-wide association studies (GWAS) for Caucasians identified several allelic variants associated with increased risk of developing restless legs syndrome (RLS), also known as Willis-Ekbom disease. Although the pathogenic mechanisms of RLS are not entirely understood, it is becoming increasingly evident that many diseases such as RLS can be attributed to an epistasis. The study objectives were to evaluate whether the associations of RLS with all loci determined in previous GWAS for Caucasians can be replicated significantly for the Korean population and to elucidate whether an epistasis plays a role in the pathogenesis of RLS.Design setting and participantsDNA from 320 patients with RLS and 320 age- and sex-matched controls were genotyped for variants in the RLS loci.Measurements and resultsA significant association was found for rs3923809 and rs9296249 in BTBD9 (P < 0.0001 and P = 0.001, respectively); the odds ratio (OR) for rs3923809 was 1.61 (P < 0.0001) to 1.88 (P < 0.0001) and the OR for rs9296249 was 1.44 (P = 0.001) to 1.73 (P = 0.002), according to the model of inheritance. The OR for the interaction between rs3923809 in BTBD9 and rs4626664 in PTPRD was 2.05 (P < 0.0001) in the additive model, 1.80 (P = 0.002) in the dominant model and 2.47 (P = 0.004) in the recessive model. There was no significant association between genotypes of all tested single nucleotide polymorphisms and the mean value of serum iron parameters.ConclusionsOur results suggest that the role of BTBD9 in the pathogenesis of restless legs syndrome is more universal across populations than previously reported and more efforts should be focused on the role of epistasis in the genetic architecture of restless legs syndrome.
Project description:Restless legs syndrome (RLS) is a common disorder diagnosed by the clinical characteristics of restlessness in the legs associated often with abnormal sensations that start at rest and are improved by activity, occurring with a diurnal pattern of worsened symptoms at night and improvement in the morning. RLS is the cause of impaired quality of life in those more severely afflicted. Treatment of RLS has undergone considerable change over the last few years. Several classes of medications have demonstrated efficacy, including the dopaminergic agents and the alpha-2-delta ligands. Levodopa was the first dopaminergic agent found to be successful. However, chronic use of levodopa is frequently associated with augmentation that is defined as an earlier occurrence of symptoms frequently associated with worsening severity and sometimes spread to other body areas. The direct dopamine agonists, including ropinirole, pramipexole, and rotigotine patch, are also effective, although side effects, including daytime sleepiness, impulse control disorders, and augmentation, may limit usefulness. The alpha-2-delta ligands, including gabapentin, gabapentin enacarbil, and pregabalin, are effective for RLS without known occurrence of augmentation or impulse control disorders, although sedation and dizziness can occur. Other agents, including the opioids and clonazepam do not have sufficient evidence to recommend them as treatment for RLS, although in an individual patient, they may provide benefit.
Project description:A link between restless legs syndrome (RLS) and iron has been recognized for several decades. Yet, the precise role that iron or other components of iron metabolism play in bringing about RLS is still a matter of debate. During the last few years, many new pieces of evidence from genetics, pathology, imaging, and clinical studies have surfaced. However, the way this evidence fits into the larger picture of RLS as a disease is not always easily understood. To provide a better understanding of the complex interplay between iron metabolism and RLS and highlight areas that need further elucidation, we systematically and critically review the current literature on the role of iron in RLS pathophysiology and treatment with a special emphasis on genetics, neuropathology, cell and animal models, imaging studies, and therapy.
Project description:Restless legs syndrome (RLS) is characterized by an uncomfortable urge to move the legs while at rest, relief upon movement or getting up to walk, and worsened symptom severity at night. RLS may be primary (idiopathic) or secondary to pregnancy or a variety of systemic disorders, especially iron deficiency, and chronic renal insufficiency. Genetic predisposition with a family history is common. The pathogenesis of RLS remains unclear but is likely to involve central nervous system dopaminergic dysfunction, as well as other, undefined contributing mechanisms. Evaluation begins with a thorough history and examination, and iron measures, including ferritin and transferrin saturation, should be checked at presentation and with worsened symptoms, especially when augmentation develops. Augmentation is characterized by more intense symptom severity, earlier symptom occurrence, and often, symptom spread from the legs to the arms or other body regions. Some people with RLS have adequate symptom control with non-pharmacological measures such as massage or temperate baths. First-line management options include iron-replacement therapy in those with evidence for reduced body-iron stores or, alternatively, with prescribed gabapentin or pregabalin, and dopamine agonists such as pramipexole, ropinirole, and rotigotine. Second-line therapies include intravenous iron infusion in those who are intolerant of oral iron and/or those having augmentation with intense, severe RLS symptoms, and opioids including tramadol, oxycodone, and methadone. RLS significantly impacts patients' quality of life and remains a therapeutic area sorely in need of innovation and a further pipeline of new, biologically informed therapies.
Project description:BACKGROUND:In the past few decades, much has been learned about the pathophysiology of restless legs syndrome (RLS). Investigators have studied neuropathology, imaging, electrophysiology, and genetics of RLS, identifying brain regions and biological systems affected in RLS. This manuscript will review RLS pathophysiology literature, examining the RLS state through consideration of the neuroanatomy, then the biological, organ, and genetic systems. METHODS:Pubmed (1966 to April 2016) was searched for the term "restless legs syndrome" cross-referenced with "pathophysiology," "pathogenesis," "pathology," or "imaging." English language papers were reviewed. Studies that focused on RLS in relation to another disease were not reviewed. RESULTS:Although there are no gross structural brain abnormalities in RLS, widespread brain areas are activated, including the pre- and post-central gyri, cingulate cortex, thalamus, and cerebellum. Pathologically, the most consistent finding is striatal iron deficiency in RLS patients. A host of other biological systems are also altered in RLS, including the dopaminergic, oxygen-sensing, opioid, glutamatergic, and serotonergic systems. Polymorphisms in genes including BTBD9 and MEIS1 are associated with RLS. DISCUSSION:RLS is a neurologic sensorimotor disorder that involves pathology, most notably iron deficiency, in motor and sensory brain areas. Brain areas not subserving movement or sensation such as the cingulate cortex and cerebellum are also involved. Other biological systems including the dopaminergic, oxygen-sensing, opioid, glutamatergic, and serotonergic systems are involved. Further research is needed to determine which of these anatomic locations or biological systems are affected primarily, and which are affected in a secondary response.
Project description:Restless legs syndrome (RLS) is a common neurological disorder of unknown etiology that is managed by therapy directed at relieving its symptoms. Treatment of patients with milder symptoms that occur intermittently may be treated with nonpharmacological therapy but when not successful, drug therapy should be chosen based on the timing of the symptoms and the needs of the patient. Patients with moderate to severe RLS typically require daily medication to control their symptoms. Although the dopamine agonists, ropinirole and pramipexole have been the drugs of choice for patients with moderate to severe RLS, drug emergent problems like augmentation may limit their use for long term therapy. Keeping the dopamine agonist dose as low as possible, using longer acting dopamine agonists such as the rotigotine patch and maintaining a high serum ferritin level may help prevent the development of augmentation. The ?2? anticonvulsants may now also be considered as drugs of choice for moderate to severe RLS patients. Opioids should be considered for RLS patients, especially for those who have failed other therapies since they are very effective for severe cases. When monitored appropriately, they can be very safe and durable for long term therapy. They should also be strongly considered for treating patients with augmentation as they are very effective for relieving the worsening symptoms that occur when decreasing or eliminating dopamine agonists.
Project description:We report a case of severe restless legs syndrome (RLS) that occurred as a side effect of olanzapine therapy. It was refractory to treatment with 2 mg of clonazepam and 3 mg ropinirole. There was partial relief with propoxyphene, however, it was stopped because of side effects. The symptoms disappeared once olanzapine was switched to another antipsychotic medication. Only two prior published reports associate olanzapine usage with development of RLS. In one report, low-dose benzodiazepines and ropinirole were associated with resolution of RLS symptoms stating dopamine depletion as the likely etiology. In our patient, however, RLS due to olanzapine was refractory to the trial of both high-dose benzodiazepine and ropinirole. This suggests that RLS occurring as a side effect of olanzapine therapy may have additional causative mechanisms beyond simple dopamine depletion as postulated before. High-dose narcotics, if tolerated, may be an alternative in such refractory cases.
Project description:Restless legs syndrome is a relatively common neurologic disorder considerably more prevalent in women than in men. It is characterized by an inactivity-induced, mostly nocturnal, uncomfortable sensation in the legs and an urge to move them to make the disagreeable sensation disappear. Some known genes contribute to this disorder and the same genes contribute to an overlapping condition-periodic leg movements that occur during sleep and result in insomnia. Dopamine and glutamate transmission in the central nervous system are involved in the pathophysiology, and an iron deficiency has been shown in region-specific areas of the brain. A review of the literature shows that pregnant women are at particular risk and that increased parity is a predisposing factor. Paradoxically, menopause increases the prevalence and severity of symptoms. This implies a complex role for reproductive hormones. It suggests that changes rather than absolute levels of estrogen may be responsible for the initiation of symptoms. Both iron (at relatively low levels in women) and estrogen (at relatively high oscillating levels in women) influence dopamine and glutamate transmission, which may help to explain women's vulnerability to this condition. The syndrome is comorbid with several disorders (such as migraine, depression, and anxiety) to which women are particularly prone. This implies that the comorbid condition or its treatment, or both, contribute to the much higher prevalence in women than in men of restless legs syndrome.