Profile of changes in gene expression in cultured hippocampal neurones evoked by the GABAB receptor agonist baclofen.
Ontology highlight
ABSTRACT: Metabotropic gamma-aminobutyric acid receptors (GABA(B)Rs) play a critical role in inhibitory synaptic transmission in the hippocampus. However, little is known about a possible long-term effect requiring transcriptional changes. Here, using microarray technology and RT-PCR of RNA from cultured rat embryonic hippocampal neurones, we report the profile of genes that are up- or downregulated by activation of GABA(B)Rs by baclofen but are not changed by baclofen in the presence of the GABA(B)R antagonist CGP-55845A. Our data show, for the first time, regulation of transcription of defined mRNAs after specific GABA(B) receptor activation. The identified genes can be grouped into those encoding signal transduction, endocytosis/trafficking, and structural classes of proteins. For example, butyrylcholinesterase, brain-derived neurotrophic factor, and COPS5 (Jab1) genes were upregulated, whereas Rab8 interacting protein and Rho GTPase-activating protein 4 were downregulated. These results provide important baseline genomic data for future studies aimed at investigating the long-term effects of GABA(B)R activation in neurones such as their roles in neuronal growth, pathway formation and stabilization, and synaptic plasticity.
SUBMITTER: Ghorbel MT
PROVIDER: S-EPMC1563181 | biostudies-literature | 2005 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA