Unknown

Dataset Information

0

Spinal dorsal horn calcium channel alpha2delta-1 subunit upregulation contributes to peripheral nerve injury-induced tactile allodynia.


ABSTRACT: Peripheral nerve injury induces upregulation of the calcium channel alpha2delta-1 structural subunit in dorsal root ganglia (DRG) and dorsal spinal cord of spinal nerve-ligated rats with neuropathic pain, suggesting a role of the calcium channel alpha2delta-1 subunit in central sensitization. To investigate whether spinal dorsal horn alpha2delta-1 subunit upregulation derives from increased DRG alpha2delta-1 subunit and plays a causal role in neuropathic pain development, we examined spinal dorsal hornalpha2delta-1 subunit expression with or without dorsal rhizotomy in spinal nerve-ligated rats and its correlation with tactile allodynia, a neuropathic pain state defined as reduced thresholds to non-noxious tactile stimulation. We also examined the effects of intrathecal alpha2delta-1 antisense oligonucleotides on alpha2delta-1 subunit expression and neuropathic allodynia in the nerve-ligated rats. Our data indicated that spinal nerve injury resulted in time-dependentalpha2delta-1 subunit upregulation in the spinal dorsal horn that correlated temporally with neuropathic allodynia development and maintenance. Dorsal rhizotomy diminished basal level expression and blocked injury-induced expression of the spinal dorsal hornalpha2delta-1 subunit and reversed injury-induced tactile allodynia. In addition, intrathecal alpha2delta-1 antisense oligonucleotides blocked injury-induced dorsal horn alpha2delta-1 subunit upregulation and diminished tactile allodynia. These findings indicate that alpha2delta-1 subunit basal expression occurs presynaptically and postsynaptically in spinal dorsal horn. Nerve injury induces mainly presynaptic alpha2delta-1 subunit expression that derives from increased alpha2delta-1 subunit in injured DRG neurons. Thus, changes in presynaptic alpha2delta-1 subunit expression contribute to injury-induced spinal neuroplasticity and central sensitization that underlies neuropathic pain development and maintenance.

SUBMITTER: Li CY 

PROVIDER: S-EPMC1635787 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7346034 | biostudies-literature
| S-EPMC6762626 | biostudies-literature
| S-EPMC6458665 | biostudies-literature
| S-EPMC2768229 | biostudies-literature
| S-EPMC9528114 | biostudies-literature
| S-EPMC5522680 | biostudies-literature
| S-EPMC5154943 | biostudies-literature
| S-EPMC6487752 | biostudies-literature
| S-EPMC3531273 | biostudies-literature
| S-EPMC9024096 | biostudies-literature