Origin and evolutionary process of the CNS elucidated by comparative genomics analysis of planarian ESTs.
Ontology highlight
ABSTRACT: Among the bilateral animals, a centralized nervous system is found in both the deuterostome and protostome. To address the question of whether the CNS was derived from a common ancestor of deuterostomes and protostomes, it is essential to know kinds of genes existed in the CNS of the putative common ancestor and to trace the evolutionary divergence of genes expressed in the CNS. To answer these questions, we took a comparative approach using different species, particularly focusing on one of the lower bilateral animals, the planarian (Platyhelminthes, Tricladida), which is known to possess a CNS. We determined the nucleotide sequence of ESTs from the head portion of planarians, obtaining 3,101 nonredundant EST clones. As a result of homology searches, we found that 116 clones had significant similarity to known genes related to the nervous system. Here, we compared these 116 planarian EST clones with all ORFs of the complete genome sequences of the human, fruit fly, and nematode, and showed that >95% of these 116 nervous system-related genes, including genes involved in brain or neural morphogenesis, were commonly shared among these organisms, thus providing evidence at the molecular level for the existence of a common ancestral CNS. Interestingly, we found that approximately 30% of planarian nervous system-related genes had homologous sequences in Arabidopsis and yeast, which do not possess a nervous system. This implies that the origin of nervous system-related genes greatly predated the emergence of the nervous system, and that these genes might have been recruited toward the nervous system.
SUBMITTER: Mineta K
PROVIDER: S-EPMC164645 | biostudies-literature | 2003 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA