Unknown

Dataset Information

0

Proteomic identification of 14-3-3zeta as a mitogen-activated protein kinase-activated protein kinase 2 substrate: role in dimer formation and ligand binding.


ABSTRACT: Mitogen-activated protein kinase (MAPK)-activated protein kinase 2 (MAPKAPK2) mediates multiple p38 MAPK-dependent inflammatory responses. To define the signal transduction pathways activated by MAPKAPK2, we identified potential MAPKAPK2 substrates by using a functional proteomic approach consisting of in vitro phosphorylation of neutrophil lysate by active recombinant MAPKAPK2, protein separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and phosphoprotein identification by peptide mass fingerprinting with matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) and protein database analysis. One of the eight candidate MAPKAPK2 substrates identified was the adaptor protein, 14-3-3zeta. We confirmed that MAPKAPK2 interacted with and phosphorylated 14-3-3zeta in vitro and in HEK293 cells. The chemoattractant formyl-methionyl-leucyl-phenylalanine (fMLP) stimulated p38-MAPK-dependent phosphorylation of 14-3-3 proteins in human neutrophils. Mutation analysis showed that MAPKAPK2 phosphorylated 14-3-3zeta at Ser-58. Computational modeling and calculation of theoretical binding energies predicted that both phosphorylation at Ser-58 and mutation of Ser-58 to Asp (S58D) compromised the ability of 14-3-3zeta to dimerize. Experimentally, S58D mutation significantly impaired both 14-3-3zeta dimerization and binding to Raf-1. These data suggest that MAPKAPK2-mediated phosphorylation regulates 14-3-3zeta functions, and this MAPKAPK2 activity may represent a novel pathway mediating p38 MAPK-dependent inflammation.

SUBMITTER: Powell DW 

PROVIDER: S-EPMC165733 | biostudies-literature | 2003 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Proteomic identification of 14-3-3zeta as a mitogen-activated protein kinase-activated protein kinase 2 substrate: role in dimer formation and ligand binding.

Powell David W DW   Rane Madhavi J MJ   Joughin Brian A BA   Kalmukova Ralitsa R   Hong Jeong-Ho JH   Tidor Bruce B   Dean William L WL   Pierce William M WM   Klein Jon B JB   Yaffe Michael B MB   McLeish Kenneth R KR  

Molecular and cellular biology 20030801 15


Mitogen-activated protein kinase (MAPK)-activated protein kinase 2 (MAPKAPK2) mediates multiple p38 MAPK-dependent inflammatory responses. To define the signal transduction pathways activated by MAPKAPK2, we identified potential MAPKAPK2 substrates by using a functional proteomic approach consisting of in vitro phosphorylation of neutrophil lysate by active recombinant MAPKAPK2, protein separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and phosphoprotein identif  ...[more]

Similar Datasets

| S-EPMC5328147 | biostudies-literature
| S-EPMC3848485 | biostudies-literature
| S-EPMC5625047 | biostudies-literature
| S-EPMC124141 | biostudies-literature
| S-EPMC9832833 | biostudies-literature
| S-EPMC2713828 | biostudies-literature
| S-EPMC5554066 | biostudies-literature
| S-EPMC4765092 | biostudies-literature
| S-EPMC3975429 | biostudies-literature
| S-EPMC1137771 | biostudies-other