Unknown

Dataset Information

0

Inversion of stereospecificity of vanillyl-alcohol oxidase.


ABSTRACT: Vanillyl-alcohol oxidase (VAO) is the prototype of a newly recognized family of structurally related oxidoreductases sharing a conserved FAD-binding domain. The active site of VAO is formed by a cavity where the enzyme is able to catalyze many reactions with phenolic substrates. Among these reactions is the stereospecific hydroxylation of 4-ethylphenol-forming (R)-1-(4'-hydroxyphenyl)ethanol. During this conversion, Asp-170 is probably critical for the hydration of the initially formed p-quinone methide intermediate. By site-directed mutagenesis, the putative active site base has been relocated to the opposite face of the active site cavity. In this way, a change in stereospecificity has been achieved. Like native VAO, the single mutants T457E, D170A, and D170S preferentially converted 4-ethylphenol to the (R)-enantiomer of 1-(4'-hydroxyphenyl)ethanol. The double mutants D170A/T457E and D170S/T457E exhibited an inverted stereospecificity with 4-ethylphenol. Particularly, D170S/T457E was strongly (S)-selective, with an enantiomeric excess of 80%. The crystal structure of D170S/T457E, in complex with trifluoromethylphenol, showed a highly conserved mode of ligand binding and revealed that the distinctive catalytic properties of this mutant are not caused by major structural changes.

SUBMITTER: van Den Heuvel RH 

PROVIDER: S-EPMC16885 | biostudies-literature | 2000 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Inversion of stereospecificity of vanillyl-alcohol oxidase.

van Den Heuvel R H RH   Fraaije M W MW   Ferrer M M   Mattevi A A   van Berkel W J WJ  

Proceedings of the National Academy of Sciences of the United States of America 20000801 17


Vanillyl-alcohol oxidase (VAO) is the prototype of a newly recognized family of structurally related oxidoreductases sharing a conserved FAD-binding domain. The active site of VAO is formed by a cavity where the enzyme is able to catalyze many reactions with phenolic substrates. Among these reactions is the stereospecific hydroxylation of 4-ethylphenol-forming (R)-1-(4'-hydroxyphenyl)ethanol. During this conversion, Asp-170 is probably critical for the hydration of the initially formed p-quinone  ...[more]

Similar Datasets

| S-EPMC5646868 | biostudies-literature
| S-EPMC10404669 | biostudies-literature
| S-EPMC5582857 | biostudies-literature
| S-EPMC6637387 | biostudies-literature
| S-EPMC6109037 | biostudies-literature
| S-EPMC1932682 | biostudies-literature
2022-12-02 | GSE212269 | GEO
| S-EPMC4764120 | biostudies-literature
| S-EPMC6899577 | biostudies-literature
| S-EPMC1162454 | biostudies-other