Project description:Despite the advancement in medicine, management of heart failure (HF), which usually presents as a disease syndrome, has been a challenge to healthcare providers. This is reflected by the relatively higher rate of readmissions along with increased mortality and morbidity associated with HF. In this review article, we first provide a general overview of types of HF pathogenesis and diagnostic features of HF including the crucial role of exercise in determining the severity of heart failure, the efficacy of therapeutic strategies and the morbidity/mortality of HF. We then discuss the quality control measures to prevent the growing readmission rates for HF. We also attempt to elucidate published and ongoing clinical trials for HF in an effort to evaluate the standard and novel therapeutic approaches, including stem cell and gene therapies, to reduce the morbidity and mortality. Finally, we discuss the appropriate utilization/documentation and medical coding based on the severity of the HF alone and with minor and major co-morbidities. We consider that this review provides an extensive overview of the HF in terms of disease pathophysiology, management and documentation for the general readers, as well as for the clinicians/physicians/hospitalists.
Project description:Chronic heart failure (CHF) remains the only cardiovascular disease with an increasing hospitalization burden and an ongoing drain on health care expenditures. The prevalence of CHF increases with advancing life span, with diastolic heart failure predominating in the elderly population. Primary prevention of coronary artery disease and risk factor management via aggressive blood pressure control are central in preventing new occurrences of left ventricular dysfunction. Optimal therapy for CHF involves identification and correction of potentially reversible precipitants, target-dose titration of medical therapy, and management of hospitalizations for decompensation. The etiological phenotype, absolute decrease in left ventricular ejection fraction and a widening of QRS duration on electrocardiography, is commonly used to identify patients at increased risk of progression of heart failure and sudden death who may benefit from prophylactic implantable cardioverter-defibrillator placement with or without cardiac resynchronization therapy. Patients who transition to advanced stages of disease despite optimal traditional medical and device therapy may be candidates for hemodynamically directed approaches such as a left ventricular assist device; in selected cases, listing for cardiac transplant may be warranted.
Project description:The purpose of this study was to determine the lifetime burden and risk factors for hospitalization after heart failure (HF) diagnosis in the community.Hospitalizations in patients with HF represent a major public health problem; however, the cumulative burden of hospitalizations after HF diagnosis is unknown, and no consistent risk factors for hospitalization have been identified.We validated a random sample of all incident HF cases in Olmsted County, Minnesota, from 1987 to 2006 and evaluated all hospitalizations after HF diagnosis through 2007. International Classification of Diseases-9th Revision codes were used to determine the primary reason for hospitalization. To account for repeated events, Andersen-Gill models were used to determine the predictors of hospitalization after HF diagnosis. Patients were censored at death or last follow-up.Among 1,077 HF patients (mean age 76.8 years, 582 [54.0%] female), 4,359 hospitalizations occurred over a mean follow-up of 4.7 years. Hospitalizations were common after HF diagnosis, with 895 (83.1%) patients hospitalized at least once, and 721 (66.9%), 577 (53.6%), and 459 (42.6%) hospitalized > or =2, > or =3, and > or =4 times, respectively. The reason for hospitalization was HF in 713 (16.5%) hospitalizations and other cardiovascular in 936 (21.6%), whereas over one-half (n = 2,679, 61.9%) were noncardiovascular. Male sex, diabetes mellitus, chronic obstructive pulmonary disease, anemia, and creatinine clearance <30 ml/min were independent predictors of hospitalization (p < 0.05 for each).Multiple hospitalizations are common after HF diagnosis, though less than one-half are due to cardiovascular causes. Comorbid conditions are strongly associated with hospitalizations, and this information could be used to define effective interventions to prevent hospitalizations in HF patients.
Project description:The diagnosis of heart failure can be difficult, even for heart failure specialists. Artificial Intelligence-Clinical Decision Support System (AI-CDSS) has the potential to assist physicians in heart failure diagnosis. The aim of this work was to evaluate the diagnostic accuracy of an AI-CDSS for heart failure. AI-CDSS for cardiology was developed with a hybrid (expert-driven and machine-learning-driven) approach of knowledge acquisition to evolve the knowledge base with heart failure diagnosis. A retrospective cohort of 1198 patients with and without heart failure was used for the development of AI-CDSS (training dataset, n = 600) and to test the performance (test dataset, n = 598). A prospective clinical pilot study of 97 patients with dyspnea was used to assess the diagnostic accuracy of AI-CDSS compared with that of non-heart failure specialists. The concordance rate between AI-CDSS and heart failure specialists was evaluated. In retrospective cohort, the concordance rate was 98.3% in the test dataset. The concordance rate for patients with heart failure with reduced ejection fraction, heart failure with mid-range ejection fraction, heart failure with preserved ejection fraction, and no heart failure was 100%, 100%, 99.6%, and 91.7%, respectively. In a prospective pilot study of 97 patients presenting with dyspnea to the outpatient clinic, 44% had heart failure. The concordance rate between AI-CDSS and heart failure specialists was 98%, whereas that between non-heart failure specialists and heart failure specialists was 76%. In conclusion, AI-CDSS showed a high diagnostic accuracy for heart failure. Therefore, AI-CDSS may be useful for the diagnosis of heart failure, especially when heart failure specialists are not available.
Project description:Heart failure (HF) is a significant cause of morbidity and mortality worldwide. Circulating biomarkers reflecting pathophysiological pathways involved in HF development and progression may assist clinicians in early diagnosis and management of HF patients. Natriuretic peptides (NPs) are cardioprotective hormones released by cardiomyocytes in response to pressure or volume overload. The roles of B-type NP (BNP) and N-terminal pro-B-type NP (NT-proBNP) for diagnosis and risk stratification in HF have been extensively demonstrated, and these biomarkers are emerging tools for population screening and as guides to the start of treatment in subclinical HF. On the contrary, conflicting evidence exists on the role of NPs as a guide to HF therapy. Among the other biomarkers, high-sensitivity troponins and soluble suppression of tumorigenesis-2 are the most promising biomarkers for risk stratification, with independent value to NPs. Other biomarkers evaluated as predictors of adverse outcome are galectin-3, growth differentiation factor 15, mid-regional pro-adrenomedullin, and makers of renal dysfunction. Multi-marker scores and genomic, transcriptomic, proteomic, and metabolomic analyses could further refine HF management.
Project description:AimsIron deficiency (ID) occurs in about 50% of patients with heart failure (HF). The European Society of Cardiology (ESC) recommends ID diagnostic testing in newly diagnosed patients with HF and during follow-up, with intravenous iron supplementation (IS) only recommended in patients with HF with reduced ejection fraction (HFrEF). This study aimed to assess prevalence, clinical characteristics, and application of ESC guidelines for ID and IS in patients with HF in the real-life clinical setting.Methods and resultsThe French transversal multicentre OFICSel registry (300 cardiologists) conducted in 2017 included patients hospitalized for HF at least once in the previous 5 years. Diverse adult patients were eligible including inpatients and outpatients and those with acute and chronic HF. Data were collected from cardiologists and patients using study-specific surveys. Data included demographic and clinical data, as well as HF and ID management data. Overall, 2822 patients, mainly male (69.3%) with a median age of 69 years (interquartile range 58-78), were included. A total of 1075 patients (38.1%) were tested for ID, with 364 (33.9%) diagnosed. Of these, 168 (46.2%) received IS: 128 (76.2%) intravenous IS and 40 (23.8%) oral. Among the 201 patients with HFrEF diagnosed with ID, 99 (49.3%) received IS: 79 (79.8%) intravenous IS and 20 (20.2%) oral.ConclusionsIn clinical practice, only one-third of patients with HF had a diagnostic test for ID. In patients with ID with HFrEF, only 39.3% received intravenous IS as recommended. Thus, in general, cardiologists should be encouraged to follow the ESC guidelines to ensure optimal treatment for patients with HF.
Project description:Half of patients with heart failure (HF) have a preserved left ventricular ejection fraction (HFpEF). Morbidity and mortality in HFpEF are similar to values observed in patients with HF and reduced EF, yet no effective treatment has been identified. While early research focused on the importance of diastolic dysfunction in the pathophysiology of HFpEF, recent studies have revealed that multiple non-diastolic abnormalities in cardiovascular function also contribute. Diagnosis of HFpEF is frequently challenging and relies upon careful clinical evaluation, echo-Doppler cardiography, and invasive haemodynamic assessment. In this review, the principal mechanisms, diagnostic approaches, and clinical trials are reviewed, along with a discussion of novel treatment strategies that are currently under investigation or hold promise for the future.
Project description:Cardiovascular disease is the leading cause of mortality in the US and in westernized countries with ischemic heart disease accounting for the majority of these deaths. Paradoxically, the improvements in the medical and surgical treatments of acute coronary syndrome are leading to an increasing number of "survivors" who are then developing heart failure. Despite considerable advances in its management, the gold standard for the treatment of end-stage heart failure patients remains heart transplantation. Nevertheless, this procedure can be offered only to a small percentage of patients who could benefit from a new heart due to the limited availability of donor organs. The aim of this review is to evaluate the safety and efficacy of innovative approaches in the diagnosis and treatment of patients refractory to standard medical therapy and excluded from cardiac transplantation lists.
Project description:BackgroundHeart failure is a common long term condition affecting around 900 000 people in the UK and patients commonly present to primary care. The prognosis of patients with a code of heart failure in their primary care record is unknown.ObjectiveThe study sought to determine the overall survival rates for patients with heart failure in a primary care population from the time of diagnosis.MethodsSurvival analysis was carried out using UK primary care records from The Health Improvement Network (THIN) between 1 January 1998 and 31 December 2012. Patients age 45 or over with a first diagnostic label of heart failure were matched by age, sex and practice to people without heart failure. Outcome was death in the heart failure and no heart failure cohorts. Kaplan-Meier curves were used to compare survival. Age-specific survival rates at 1, 5 and 10 years were determined for men and women with heart failure. Survival rates by year of diagnosis and case definition were also calculated.ResultsDuring the study period, 54313 patients had a first diagnostic code of heart failure. Overall survival rates for the heart failure group were 81.3% (95%CI 80.9-81.6), 51.5% (95%CI 51.0-52.0) and 29.5% (95%CI 28.9-30.2) at 1, 5 and 10 years respectively and did not change over time.ConclusionsIn a primary care population, the survival of patients diagnosed with heart failure did not improved over time. Further research is needed to explain these trends and to find strategies to improve outlook.
Project description:The cardiovascular disease continuum begins with risk factors such as diabetes mellitus (DM), progresses to vasculopathy and myocardial dysfunction, and finally ends with cardiovascular death. Diabetes is associated with a 2- to 4-fold increased risk for heart failure (HF). Moreover, HF patients with DM have a worse prognosis than those without DM. Diabetes can cause myocardial ischemia via micro- and macrovasculopathy and can directly exert deleterious effects on the myocardium. Hyperglycemia, hyperinsulinemia, and insulin resistance can cause alterations in vascular homeostasis. Then, reduced nitric oxide and increased reactive oxygen species levels favor inflammation leading to atherothrombotic progression and myocardial dysfunction. The classification, diagnosis, and treatment of HF for a patient with and without DM remain the same. Until now, drugs targeting neurohumoral and metabolic pathways improved mortality and morbidity in HF with reduced ejection fraction (HFrEF). Therefore, all HFrEF patients should receive guideline-directed medical therapy. By contrast, drugs modulating neurohumoral activity did not improve survival in HF with preserved ejection fraction (HFpEF) patients. Trials investigating whether sodium-glucose cotransporter-2 inhibitors are effective in HFpEF are on-going. This review will summarize the epidemiology, pathophysiology, and treatment of HF in diabetes.