Unknown

Dataset Information

0

Selecting effective siRNA sequences by using radial basis function network and decision tree learning.


ABSTRACT: BACKGROUND: Although short interfering RNA (siRNA) has been widely used for studying gene functions in mammalian cells, its gene silencing efficacy varies markedly and there are only a few consistencies among the recently reported design rules/guidelines for selecting siRNA sequences effective for mammalian genes. Another shortcoming of the previously reported methods is that they cannot estimate the probability that a candidate sequence will silence the target gene. RESULTS: We propose two prediction methods for selecting effective siRNA target sequences from many possible candidate sequences, one based on the supervised learning of a radial basis function (RBF) network and other based on decision tree learning. They are quite different from the previous score-based siRNA design techniques and can predict the probability that a candidate siRNA sequence will be effective. The proposed methods were evaluated by applying them to recently reported effective and ineffective siRNA sequences for various genes (15 genes, 196 siRNA sequences). We also propose the combined prediction method of the RBF network and decision tree learning. As the average prediction probabilities of gene silencing for the effective and ineffective siRNA sequences of the reported genes by the proposed three methods were respectively 65% and 32%, 56.6% and 38.1%, and 68.5% and 28.1%, the methods imply high estimation accuracy for selecting candidate siRNA sequences. CONCLUSION: New prediction methods were presented for selecting effective siRNA sequences. As the proposed methods indicated high estimation accuracy for selecting candidate siRNA sequences, they would be useful for many other genes.

SUBMITTER: Takasaki S 

PROVIDER: S-EPMC1764479 | biostudies-literature | 2006

REPOSITORIES: biostudies-literature

altmetric image

Publications

Selecting effective siRNA sequences by using radial basis function network and decision tree learning.

Takasaki Shigeru S   Kawamura Yoshihiro Y   Konagaya Akihiko A  

BMC bioinformatics 20061218


<h4>Background</h4>Although short interfering RNA (siRNA) has been widely used for studying gene functions in mammalian cells, its gene silencing efficacy varies markedly and there are only a few consistencies among the recently reported design rules/guidelines for selecting siRNA sequences effective for mammalian genes. Another shortcoming of the previously reported methods is that they cannot estimate the probability that a candidate sequence will silence the target gene.<h4>Results</h4>We pro  ...[more]

Similar Datasets

| S-EPMC2143887 | biostudies-other
| S-EPMC3223201 | biostudies-literature
| S-EPMC7052196 | biostudies-literature
| S-EPMC9751327 | biostudies-literature
| S-EPMC4251295 | biostudies-literature
| S-EPMC5549711 | biostudies-other
| S-EPMC7371960 | biostudies-literature
| S-EPMC7136841 | biostudies-literature
| S-EPMC3645974 | biostudies-literature
| S-EPMC4569059 | biostudies-literature