Inhibition of NF-kappaB potentiates amyloid beta-mediated neuronal apoptosis.
Ontology highlight
ABSTRACT: One mechanism leading to neurodegeneration during Alzheimer's disease (AD) is amyloid beta peptide (Abeta) neurotoxicity. Abeta elicits in cultured central nervous system neurons a biphasic response: a low-dose neurotrophic response and a high-dose neurotoxic response. Previously we reported that NF-kappaB is activated by low doses of Abeta only. Here we show that NF-kappaB activation leads to neuroprotection. In primary neurons we found that a pretreatment with 0.1 microM Abeta-(1-40) protects against neuronal death induced with 10 microM Abeta-(1-40). As a known neuroprotective agent we next analyzed the effect of tumor necrosis factor alpha (TNF-alpha). Maximal activation of NF-kappaB was found with 2 ng/ml TNF-alpha. Pretreatment with TNF-alpha protected cerebellar granule cells from cell death induced by 10 microM Abeta-(1-40). This protection is described by an inverted U-shaped dose response and is maximal with a NF-kappaB-activating dose. The molecular specificity of this protective effect was analyzed by specific blockade of NF-kappaB activation. Overexpression of a transdominant negative IkappaB-alpha blocks NF-kappaB activation and potentiates Abeta-mediated neuronal apoptosis. Our findings show that activation of NF-kappaB is the underlying mechanism of the neuroprotective effect of low-dose Abeta and TNF-alpha. In accordance with these in vitro data we find that nuclear NF-kappaB immunoreactivity around various plaque stages of AD patients is reduced in comparison to age-matched controls. Taken together these data suggest that pharmacological NF-kappaB activation may be a useful approach in the treatment of AD and related neurodegenerative disorders.
SUBMITTER: Kaltschmidt B
PROVIDER: S-EPMC17796 | biostudies-literature | 1999 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA