Unknown

Dataset Information

0

RNA-mediated destabilization of the sigma(70) region 4/beta flap interaction facilitates engagement of RNA polymerase by the Q antiterminator.


ABSTRACT: The bacterial RNA polymerase (RNAP) holoenzyme consists of a catalytic core enzyme (alpha(2)betabeta'omega) complexed with a sigma factor that is required for promoter-specific transcription initiation. During early elongation, the stability of interactions between sigma(70) (the primary sigma factor in Escherichia coli) and core decreases due to an ordered displacement of segments of sigma(70) from core triggered by growth of the nascent RNA. Here we demonstrate that the nascent RNA-mediated destabilization of an interaction between sigma(70) region 4 and the flap domain of the beta subunit is required for the bacteriophage lambda Q antiterminator protein to contact holoenzyme during early elongation. We demonstrate further that the requirement for nascent RNA in the process by which Q engages RNAP can be bypassed if sigma(70) region 4 is removed. Our findings illustrate how a regulator can exploit the nascent RNA-mediated reconfiguration of the holoenzyme to gain access to the enzyme during early elongation.

SUBMITTER: Nickels BE 

PROVIDER: S-EPMC1797609 | biostudies-literature | 2006 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

RNA-mediated destabilization of the sigma(70) region 4/beta flap interaction facilitates engagement of RNA polymerase by the Q antiterminator.

Nickels Bryce E BE   Roberts Christine W CW   Roberts Jeffrey W JW   Hochschild Ann A  

Molecular cell 20061101 3


The bacterial RNA polymerase (RNAP) holoenzyme consists of a catalytic core enzyme (alpha(2)betabeta'omega) complexed with a sigma factor that is required for promoter-specific transcription initiation. During early elongation, the stability of interactions between sigma(70) (the primary sigma factor in Escherichia coli) and core decreases due to an ordered displacement of segments of sigma(70) from core triggered by growth of the nascent RNA. Here we demonstrate that the nascent RNA-mediated de  ...[more]

Similar Datasets

| S-EPMC2563111 | biostudies-literature
| S-EPMC2758106 | biostudies-literature
| S-EPMC4499122 | biostudies-literature
| S-EPMC3836757 | biostudies-literature
| S-EPMC3161345 | biostudies-literature
| S-EPMC5949986 | biostudies-literature
| S-EPMC7948647 | biostudies-literature
| S-EPMC3985618 | biostudies-literature
| S-EPMC2277520 | biostudies-literature
| S-EPMC10469570 | biostudies-literature