Unknown

Dataset Information

0

Legionella pneumophila inhibits macrophage apoptosis by targeting pro-death members of the Bcl2 protein family.


ABSTRACT: To establish a vacuole that supports bacterial replication, Legionella pneumophila translocates a large number of bacterial proteins into host cells via the Dot/Icm type IV secretion system. Functions of most of these translocated proteins are unknown, but recent investigations suggest their roles in modulating diverse host processes such as vesicle trafficking, autophagy, ubiquitination, and apoptosis. Cells infected by L. pneumophila exhibited resistance to apoptotic stimuli, but the bacterial protein directly involved in this process remained elusive. We show here that SidF, one substrate of the Dot/Icm transporter, is involved in the inhibition of infected cells from undergoing apoptosis to allow maximal bacterial multiplication. Permissive macrophages harboring a replicating sidF mutant are more apoptotic and more sensitive to staurosporine-induced cell death. Furthermore, cells expressing SidF are resistant to apoptosis stimuli. SidF contributes to apoptosis resistance in L. pneumophila-infected cells by specifically interacting with and neutralizing the effects of BNIP3 and Bcl-rambo, two proapoptotic members of Bcl2 protein family. Thus, inhibiting the functions of host pro-death proteins by translocated effectors constitutes a mechanism for L. pneumophila to protect host cells from apoptosis.

SUBMITTER: Banga S 

PROVIDER: S-EPMC1829273 | biostudies-literature | 2007 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Legionella pneumophila inhibits macrophage apoptosis by targeting pro-death members of the Bcl2 protein family.

Banga Simran S   Gao Ping P   Shen Xihui X   Fiscus Valena V   Zong Wei-Xing WX   Chen Lingling L   Luo Zhao-Qing ZQ  

Proceedings of the National Academy of Sciences of the United States of America 20070314 12


To establish a vacuole that supports bacterial replication, Legionella pneumophila translocates a large number of bacterial proteins into host cells via the Dot/Icm type IV secretion system. Functions of most of these translocated proteins are unknown, but recent investigations suggest their roles in modulating diverse host processes such as vesicle trafficking, autophagy, ubiquitination, and apoptosis. Cells infected by L. pneumophila exhibited resistance to apoptotic stimuli, but the bacterial  ...[more]

Similar Datasets

| S-EPMC8496037 | biostudies-literature
| S-EPMC1636560 | biostudies-literature
| S-EPMC9138289 | biostudies-literature
| S-EPMC97143 | biostudies-literature
| S-EPMC4918797 | biostudies-literature
| S-EPMC5311068 | biostudies-literature
| S-EPMC2293231 | biostudies-literature
| S-EPMC1479236 | biostudies-other
| S-EPMC1932860 | biostudies-other
2008-11-15 | GSE13147 | GEO