Unknown

Dataset Information

0

The color of rhodopsins at the ab initio multiconfigurational perturbation theory resolution.


ABSTRACT: We demonstrate that "brute force" quantum-mechanics/molecular-mechanics computations based on ab initio (i.e., first principles) multiconfigurational perturbation theory can reproduce the absorption maxima of a set of modified bovine rhodopsins with an accuracy allowing for the analysis of the factors determining their colors. In particular, we show that the theory accounts for the changes in excitation energy even when the proteins display the same charge distribution. Three color-tuning mechanisms, leading to changes of close magnitude, are demonstrated to operate in these conditions. The first is based on the change of the conformation of the conjugated backbone of the retinal chromophore. The second operates through the control of the distance between the positive charge residing on the chromophore and the carboxylate counterion. Finally, the third mechanism operates through the changes in orientation of the chromophore relative to the protein. These results offer perspectives for the unbiased computational design of mutants or chemically modified proteins with wanted optical properties.

SUBMITTER: Coto PB 

PROVIDER: S-EPMC1859901 | biostudies-literature | 2006 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

The color of rhodopsins at the ab initio multiconfigurational perturbation theory resolution.

Coto Pedro B PB   Strambi Angela A   Ferré Nicolas N   Olivucci Massimo M  

Proceedings of the National Academy of Sciences of the United States of America 20061107 46


We demonstrate that "brute force" quantum-mechanics/molecular-mechanics computations based on ab initio (i.e., first principles) multiconfigurational perturbation theory can reproduce the absorption maxima of a set of modified bovine rhodopsins with an accuracy allowing for the analysis of the factors determining their colors. In particular, we show that the theory accounts for the changes in excitation energy even when the proteins display the same charge distribution. Three color-tuning mechan  ...[more]

Similar Datasets

| S-EPMC7307914 | biostudies-literature
| S-EPMC7105459 | biostudies-literature
| S-EPMC8444344 | biostudies-literature
| S-EPMC4784676 | biostudies-literature
| S-EPMC5094446 | biostudies-literature
| S-EPMC5056061 | biostudies-literature