Ontology highlight
ABSTRACT: Background
Desert ants (Cataglyphis fortis) are central place foragers that navigate by means of path integration. This mechanism remains accurate even on three-dimensional itineraries. In this study, we tested three hypotheses concerning the underlying principles of Cataglyphis' orientation in 3-D: (1) Do the ants employ a strictly two-dimensional representation of their itineraries, (2) do they link additional information about ascents and descents to their 2-D home vector, or (3) do they use true 3-D vector navigation?Results
We trained ants to walk routes within channels that included ascents and descents. In choice tests, ants walked on ramps more frequently and at greater lengths if their preceding journey also included vertical components. However, the sequence of ascents and descents, as well as their distance from nest and feeder, were not retraced. Importantly, the animals did not compensate for an enforced vertical deviation from the home vector.Conclusion
We conclude that Cataglyphis fortis essentially represents its environment in a simplified, two-dimensional fashion, with information about vertical path segments being learnt, but independently from their congruence with the actual three-dimensional configuration of the environment. Our findings render the existence of a path integration mechanism that is functional in all three dimensions highly unlikely.
SUBMITTER: Grah G
PROVIDER: S-EPMC1868725 | biostudies-literature | 2007 May
REPOSITORIES: biostudies-literature
Grah Gunnar G Wehner Rüdiger R Ronacher Bernhard B
Frontiers in zoology 20070503
<h4>Background</h4>Desert ants (Cataglyphis fortis) are central place foragers that navigate by means of path integration. This mechanism remains accurate even on three-dimensional itineraries. In this study, we tested three hypotheses concerning the underlying principles of Cataglyphis' orientation in 3-D: (1) Do the ants employ a strictly two-dimensional representation of their itineraries, (2) do they link additional information about ascents and descents to their 2-D home vector, or (3) do t ...[more]