Clustering of peptidoglycan recognition protein-SA is required for sensing lysine-type peptidoglycan in insects.
Ontology highlight
ABSTRACT: Recognition of lysine-type peptidoglycan by peptidoglycan recognition protein (PGRP)-SA provokes the activation of the Toll and prophenoloxidase pathways. Here we reveal that a soluble fragment of lysine-type peptidoglycan, a long glycan chain with short stem peptides, is a potent activator of the Drosophila Toll pathway and the prophenoloxidase activation cascade in the beetle Tenebrio molitor. Using this peptidoglycan fragment, we present biochemical evidence that clustering of PGRP-SA molecules on the peptidoglycan is required for the activation of the prophenoloxidase cascade. We subsequently highlight that the lysozyme-mediated partial digestion of highly cross-linked lysine-type peptidoglycan dramatically increases the binding of PGRP-SA, presumably by inducing clustering of PGRP-SA, which then recruits the Gram-negative bacteria-binding protein 1 homologue and a modular serine protease containing low-density lipoprotein and complement control protein domains. The crucial role of lysozyme in the prophenoloxidase activation cascade is further confirmed in vivo by using a lysozyme inhibitor. Taken together, we propose a model whereby lysozyme presents a processed form of lysine-type peptidoglycan for clustering of PGRP-SA that recruits Gram-negative bacteria-binding protein 1 and the modular serine protease, which leads to the activation of both the Toll and prophenoloxidase pathways.
SUBMITTER: Park JW
PROVIDER: S-EPMC1871832 | biostudies-literature | 2007 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA