ABSTRACT: The current env-based subtyping of human T-cell lymphotropic virus type II (HTLV-II) identifies only two heterogenetic groups, HTLV-IIa and HTLV-IIb. To better understand the genetic diversity and phylogeny of HTLV-II, we examined the most divergent genomic region of HTLV-II, the long terminal repeat, by using restriction fragment length polymorphism (RFLP) and sequence analysis. Long terminal repeat sequences were amplified from peripheral blood mononuclear cells by PCR and digested with seven restriction endonucleases that differentiated HTLV-II into five HTLV-IIa (IIa0 to IIa4) and six HTLV-IIb (IIb0 to IIb5) restriction types, with HTLV-IIa0 and HTLV-IIb0 being prototypes for the MoT and NRA isolates, respectively. We examined 169 HTLV-II-infected samples, including 123 from blood donors and intravenous drug users (IDU) from the Americas, 16 from IDU from Europe, and 30 from Amerindians. Of the 169 samples, 109 (64.5%) were categorized as HTLV-IIa and 60 (35.5%) were categorized as HTLV-IIb. The predominant restriction types seen among the U.S. blood donors and U.S. IDU were IIa0 (68.7%) and IIb4 (10.4%). Four Spanish and seven Italian samples were IIb4, while five Norwegian samples were IIa2. Twelve Guaymi and all ten Seminole samples were single restriction types (IIb1 and IIb5, respectively), whereas the two Navajo and six Pueblo samples had a mixture of restriction types IIa0, IIa4, and IIb5. Of the HTLV-IIb restriction types observed in the U.S. non-Indians, 42.8% appear to have originated from the North Amerindian (IIb5), while 57.2% were similar to the European IIb4 restriction type. Sequences of 15 selected HTLV-II samples were determined and phylogenetically compared with 7 previously published HTLV-II LTR sequences. The derived topologies revealed three HTLV-IIa phylogroups (A-I to A-III) and four HTLV-IIb phylogroups (B-I to B-IV). Furthermore, the HTLV-IIa phylogroups appear to have evolved from the HTLV-IIb phylogroups. In the HTLV-IIa cluster, a Navajo (A-I) and a Brazilian (A-II) sequence formed separate phylogroups, while the remaining IIa sequences formed a single phylogroup (A-III). The four HTLV-IIb phylogroups were represented predominantly by a New York IDU (B-I), European IDU (B-II), North Amerindian and NRA (B-III), and Central Guaymi Indian (B-IV) sequence(s). Comparison of the phylogenetic data with the RFLP results revealed that results of the two methods correlated completely, demonstrating the ability of the RFLP method to predict the phylogroup of HTLV-II-infected samples accurately and quickly. GENBANK/U10258