Evolution of robustness in the signaling network of Pristionchus vulva development.
Ontology highlight
ABSTRACT: Robustness to environmental or genetic perturbation, like any other trait, is affected by evolutionary change. However, direct studies on the interplay of robustness and evolvability are limited and require experimental microevolutionary studies of developmental processes. One system in which such microevolutionary studies can be performed is vulva development in the nematode Pristionchus pacificus. Three vulval precursor cells respond to redundant cell-cell interactions, including signals from the gonad and the epidermal cell P8.p. Interestingly, P. pacificus P8.p is involved in cell fate specification of the future vulva cells by lateral inhibition but is incompetent to respond to the inductive signal from the gonad itself. These functional properties of P8.p are unknown from other nematodes, such as Caenorhabditis elegans. We began an experimental and genetic analysis of the microevolution of P8.p function. We show that vulva misspecification events differ between Pristionchus strains and species. Similarly, lateral inhibition and developmental competence of P8.p evolved within the genus Pristionchus and between natural isolates of P. pacificus. Surprisingly, in some recombinant inbred lines of two distinct P. pacificus isolates, P8.p gained competence to form vulva tissue, a trait that was never observed in P. pacificus isolates. Our results suggest differences in developmental stability between natural isolates, and we hypothesize that the remarkable evolvability of redundant cell-cell interactions allows for adaptive evolution of robustness to developmental noise.
SUBMITTER: Zauner H
PROVIDER: S-EPMC1891216 | biostudies-literature | 2007 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA