Unknown

Dataset Information

0

Structure of a hyper-cleavable monomeric fragment of phage lambda repressor containing the cleavage site region.


ABSTRACT: The key event in the switch from lysogenic to lytic growth of phage lambda is the self-cleavage of lambda repressor, which is induced by the formation of a RecA-ssDNA-ATP filament at a site of DNA damage. Lambda repressor cleaves itself at the peptide bond between Ala111 and Gly112, but only when bound as a monomer to the RecA-ssDNA-ATP filament. Here we have designed a hyper-cleavable fragment of lambda repressor containing the hinge and C-terminal domain (residues 101-229), in which the monomer-monomer interface is disrupted by two point mutations and a deletion of seven residues at the C terminus. This fragment crystallizes as a monomer and its structure has been determined to 1.8 A resolution. The hinge region, which bears the cleavage site, is folded over the active site of the C-terminal oligomerization domain (CTD) but with the cleavage site flipped out and exposed to solvent. Thus, the structure represents a non-cleavable conformation of the repressor, but one that is poised for cleavage after modest rearrangements that are presumably stabilized by binding to RecA. The structure provides a unique snapshot of lambda repressor in a conformation that sheds light on how its self-cleavage is tempered in the absence of RecA, as well as a framework for interpreting previous genetic and biochemical data concerning the RecA-mediated cleavage reaction.

SUBMITTER: Ndjonka D 

PROVIDER: S-EPMC1896146 | biostudies-literature | 2006 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Structure of a hyper-cleavable monomeric fragment of phage lambda repressor containing the cleavage site region.

Ndjonka Dieudonné D   Bell Charles E CE  

Journal of molecular biology 20060715 3


The key event in the switch from lysogenic to lytic growth of phage lambda is the self-cleavage of lambda repressor, which is induced by the formation of a RecA-ssDNA-ATP filament at a site of DNA damage. Lambda repressor cleaves itself at the peptide bond between Ala111 and Gly112, but only when bound as a monomer to the RecA-ssDNA-ATP filament. Here we have designed a hyper-cleavable fragment of lambda repressor containing the hinge and C-terminal domain (residues 101-229), in which the monome  ...[more]

Similar Datasets

| S-EPMC4059103 | biostudies-literature
| S-EPMC20502 | biostudies-other
| S-EPMC2077068 | biostudies-literature
| S-EPMC8103288 | biostudies-literature
| S-EPMC3761395 | biostudies-literature
| S-EPMC1450210 | biostudies-literature
| S-EPMC165751 | biostudies-literature
| S-EPMC1304381 | biostudies-literature
| S-EPMC1748174 | biostudies-literature
| S-EPMC1224087 | biostudies-other