Insights into extensive deletions around the XK locus associated with McLeod phenotype and characterization of two novel cases.
Ontology highlight
ABSTRACT: The McLeod phenotype is derived from various forms of XK gene defects that result in the absence of XK protein, and is defined hematologically by the absence of Kx antigen, weakening of Kell system antigens, and red cell acanthocytosis. Individuals with the McLeod phenotype usually develop late-onset neuromuscular abnormalities known as the McLeod syndrome (MLS). MLS is an X-linked multi-system disorder caused by absence of XK alone, or when the disorder is caused by large deletions, it may be accompanied with Duchenne muscular dystrophy (DMD), chronic granulomatous disease (CYBB), retinitis pigmentosa (RPGR), and ornithine transcarbamylase deficiency (OTC). XK defects derived from a large deletion at the XK locus (Xp21.1) have not been characterized at the molecular level. In this study, the deletion breakpoints of two novel cases of McLeod phenotype with extensive deletions are reported. Case 1 has greater than 1.12 million base-pairs (mb) deletion around the XK locus with 7 genes affected. Case 2 has greater than 5.65 mb deletion from TCTE1L to DMD encompassing 20 genes. Phylogenetic analyses demonstrated that DMD, XK and CYBB have close paralogs, some of which may partially substitute for the functions of their counterparts. The loci around XK are highly conserved from fish to human; however, the disorders are probably specific to mammals, and may coincide with the translocation of the loci to the X chromosome after the speciation in birds. The non-synonymous to synonymous nucleotide substitution rate ratio (omega=dN/dS) in these genes was examined. CYBB and RPGR show evidence of positive selection, whereas DMD, XK and OTC are subject to selective constraint.
SUBMITTER: Peng J
PROVIDER: S-EPMC1931494 | biostudies-literature | 2007 May
REPOSITORIES: biostudies-literature
ACCESS DATA