Unknown

Dataset Information

0

Single-molecule and ensemble fluorescence assays for a functionally important conformational change in T7 DNA polymerase.


ABSTRACT: We report fluorescence assays for a functionally important conformational change in bacteriophage T7 DNA polymerase (T7 pol) that use the environmental sensitivity of a Cy3 dye attached to a DNA substrate. An increase in fluorescence intensity of Cy3 is observed at the single-molecule level, reflecting a conformational change within the T7 pol ternary complex upon binding of a dNTP substrate. This fluorescence change is believed to reflect the closing of the T7 pol fingers domain, which is crucial for polymerase function. The rate of the conformational change induced by a complementary dNTP substrate was determined by both conventional stopped-flow and high-time-resolution continuous-flow fluorescence measurements at the ensemble-averaged level. The rate of this conformational change is much faster than that of DNA synthesis but is significantly reduced for noncomplementary dNTPs, as revealed by single-molecule measurements. The high level of selectivity of incoming dNTPs pertinent to this conformational change is a major contributor to replicative fidelity.

SUBMITTER: Luo G 

PROVIDER: S-EPMC1937514 | biostudies-literature | 2007 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Single-molecule and ensemble fluorescence assays for a functionally important conformational change in T7 DNA polymerase.

Luo Guobin G   Wang Mina M   Konigsberg William H WH   Xie X Sunney XS  

Proceedings of the National Academy of Sciences of the United States of America 20070718 31


We report fluorescence assays for a functionally important conformational change in bacteriophage T7 DNA polymerase (T7 pol) that use the environmental sensitivity of a Cy3 dye attached to a DNA substrate. An increase in fluorescence intensity of Cy3 is observed at the single-molecule level, reflecting a conformational change within the T7 pol ternary complex upon binding of a dNTP substrate. This fluorescence change is believed to reflect the closing of the T7 pol fingers domain, which is cruci  ...[more]

Similar Datasets

| S-EPMC291813 | biostudies-literature
| S-EPMC3020739 | biostudies-literature
| S-EPMC3136518 | biostudies-literature
| S-EPMC7368059 | biostudies-literature
| S-EPMC3369874 | biostudies-literature
| S-EPMC3675631 | biostudies-literature
| S-EPMC2911022 | biostudies-literature
| S-EPMC4313089 | biostudies-other
| S-EPMC2930546 | biostudies-literature
| S-EPMC2546521 | biostudies-literature