Unknown

Dataset Information

0

Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation.


ABSTRACT: In seed plants, shoot branching is initiated by the formation of new meristems in the axils of leaves, which subsequently develop into new axes of growth. This study describes the genetic control of axillary meristem formation by the LATERAL SUPPRESSOR (LAS) gene in Arabidopsis thaliana. las mutants show a novel phenotype that is characterized by the inability to form lateral shoots during vegetative development. The analysis shows that axillary meristem formation is differently regulated during different phases of development. During reproductive development, axillary meristems initiate in close proximity to the shoot apical meristem and do not require LAS function. In contrast, during the vegetative phase, axillary meristems initiate at a distance to the SAM and require LAS function. This control mechanism is conserved between the distantly related species tomato and Arabidopsis. Monitoring the patterns of LAS and SHOOT MERISTEMLESS transcript accumulation allowed us to identify early steps in the development of leaf axil identity, which seem to be a prerequisite for axillary meristem initiation. Other regulators of shoot branching, like REVOLUTA and AUXIN RESISTANT 1, act downstream of LAS. The results are discussed in the context of the "detached meristem" and the "de novo formation" concepts of axillary meristem formation.

SUBMITTER: Greb T 

PROVIDER: S-EPMC196050 | biostudies-literature | 2003 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation.

Greb Thomas T   Clarenz Oliver O   Schafer Elisabeth E   Muller Dorte D   Herrero Ruben R   Schmitz Gregor G   Theres Klaus K  

Genes & development 20030501 9


In seed plants, shoot branching is initiated by the formation of new meristems in the axils of leaves, which subsequently develop into new axes of growth. This study describes the genetic control of axillary meristem formation by the LATERAL SUPPRESSOR (LAS) gene in Arabidopsis thaliana. las mutants show a novel phenotype that is characterized by the inability to form lateral shoots during vegetative development. The analysis shows that axillary meristem formation is differently regulated during  ...[more]

Similar Datasets

| S-EPMC6307885 | biostudies-other
| S-EPMC9162184 | biostudies-literature
| S-EPMC2938917 | biostudies-literature
| S-EPMC10128955 | biostudies-literature
| S-EPMC8157709 | biostudies-literature
| S-EPMC7774873 | biostudies-literature
| S-EPMC7216077 | biostudies-literature
| S-EPMC8068362 | biostudies-literature
| S-EPMC7464525 | biostudies-literature
| S-EPMC6685650 | biostudies-literature