Unknown

Dataset Information

0

The anatomy of microbial cell state transitions in response to oxygen.


ABSTRACT: Adjustment of physiology in response to changes in oxygen availability is critical for the survival of all organisms. However, the chronology of events and the regulatory processes that determine how and when changes in environmental oxygen tension result in an appropriate cellular response is not well understood at a systems level. Therefore, transcriptome, proteome, ATP, and growth changes were analyzed in a halophilic archaeon to generate a temporal model that describes the cellular events that drive the transition between the organism's two opposing cell states of anoxic quiescence and aerobic growth. According to this model, upon oxygen influx, an initial burst of protein synthesis precedes ATP and transcription induction, rapidly driving the cell out of anoxic quiescence, culminating in the resumption of growth. This model also suggests that quiescent cells appear to remain actively poised for energy production from a variety of different sources. Dynamic temporal analysis of relationships between transcription and translation of key genes suggests several important mechanisms for cellular sustenance under anoxia as well as specific instances of post-transcriptional regulation.

SUBMITTER: Schmid AK 

PROVIDER: S-EPMC1987344 | biostudies-literature | 2007 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

The anatomy of microbial cell state transitions in response to oxygen.

Schmid Amy K AK   Reiss David J DJ   Kaur Amardeep A   Pan Min M   King Nichole N   Van Phu T PT   Hohmann Laura L   Martin Daniel B DB   Baliga Nitin S NS  

Genome research 20070904 10


Adjustment of physiology in response to changes in oxygen availability is critical for the survival of all organisms. However, the chronology of events and the regulatory processes that determine how and when changes in environmental oxygen tension result in an appropriate cellular response is not well understood at a systems level. Therefore, transcriptome, proteome, ATP, and growth changes were analyzed in a halophilic archaeon to generate a temporal model that describes the cellular events th  ...[more]

Similar Datasets

| S-EPMC4580445 | biostudies-literature
| S-EPMC9644236 | biostudies-literature
| S-EPMC4636788 | biostudies-literature
| S-EPMC10946328 | biostudies-literature
| S-EPMC9568589 | biostudies-literature
| S-EPMC10592931 | biostudies-literature
| S-EPMC4657962 | biostudies-literature
| S-EPMC5478290 | biostudies-literature
| S-EPMC9410915 | biostudies-literature
| S-EPMC8412323 | biostudies-literature