Unknown

Dataset Information

0

3D pattern of brain abnormalities in Fragile X syndrome visualized using tensor-based morphometry.


ABSTRACT: Fragile X syndrome (FraX), a genetic neurodevelopmental disorder, results in impaired cognition with particular deficits in executive function and visuo-spatial skills. Here we report the first detailed 3D maps of the effects of the Fragile X mutation on brain structure, using tensor-based morphometry. TBM visualizes structural brain deficits automatically, without time-consuming specification of regions-of-interest. We compared 36 subjects with FraX (age: 14.66+/-1.58 S.D., 18 females/18 males), and 33 age-matched healthy controls (age: 14.67+/-2.2 S.D., 17 females/16 males), using high-dimensional elastic image registration. All 69 subjects' 3D T1-weighted brain MRIs were spatially deformed to match a high-resolution single-subject average MRI scan in ICBM space, whose geometry was optimized to produce a minimal deformation target. Maps of the local Jacobian determinant (expansion factor) were computed from the deformation fields. Statistical maps showed increased caudate (10% higher; p = 0.001) and lateral ventricle volumes (19% higher; p = 0.003), and trend-level parietal and temporal white matter excesses (10% higher locally; p = 0.04). In affected females, volume abnormalities correlated with reduction in systemically measured levels of the Fragile X mental retardation protein (FMRP; Spearman's r < -0.5 locally). Decreased FMRP correlated with ventricular expansion (p = 0.042; permutation test), and anterior cingulate tissue reductions (p = 0.0026; permutation test) supporting theories that FMRP is required for normal dendritic pruning in fronto-striatal-limbic pathways. No sex differences were found; findings were confirmed using traditional volumetric measures in regions of interest. Deficit patterns were replicated by performing statistics after logarithmic transformation, which may be more appropriate for tensor-valued data. Investigation of how these anomalies emerge over time will accelerate our understanding of FraX and its treatment.

SUBMITTER: Lee AD 

PROVIDER: S-EPMC1995408 | biostudies-literature | 2007 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

3D pattern of brain abnormalities in Fragile X syndrome visualized using tensor-based morphometry.

Lee Agatha D AD   Leow Alex D AD   Lu Allen A   Reiss Allan L AL   Hall Scott S   Chiang Ming-Chang MC   Toga Arthur W AW   Thompson Paul M PM  

NeuroImage 20061208 3


Fragile X syndrome (FraX), a genetic neurodevelopmental disorder, results in impaired cognition with particular deficits in executive function and visuo-spatial skills. Here we report the first detailed 3D maps of the effects of the Fragile X mutation on brain structure, using tensor-based morphometry. TBM visualizes structural brain deficits automatically, without time-consuming specification of regions-of-interest. We compared 36 subjects with FraX (age: 14.66+/-1.58 S.D., 18 females/18 males)  ...[more]

Similar Datasets

| S-EPMC2566993 | biostudies-literature
| S-EPMC10785196 | biostudies-literature
| S-EPMC7325797 | biostudies-literature
| S-EPMC7483731 | biostudies-literature
| S-EPMC4144412 | biostudies-literature
| S-EPMC8597091 | biostudies-literature
| S-EPMC6276592 | biostudies-literature
| S-EPMC7865561 | biostudies-literature
2021-10-25 | GSE180137 | GEO
| S-EPMC3290572 | biostudies-literature