Transient anchorage of cross-linked glycosyl-phosphatidylinositol-anchored proteins depends on cholesterol, Src family kinases, caveolin, and phosphoinositides.
Ontology highlight
ABSTRACT: How outer leaflet plasma membrane components, including glycosyl-phosphatidylinositol-anchored proteins (GPIAPs), transmit signals to the cell interior is an open question in membrane biology. By deliberately cross-linking several GPIAPs under antibody-conjugated 40-nm gold particles, transient anchorage of the gold particle-induced clusters of both Thy-1 and CD73, a 5' exonucleotidase, occurred for periods ranging from 300 ms to 10 s in fibroblasts. Transient anchorage was abolished by cholesterol depletion, addition of the Src family kinase (SFK) inhibitor PP2, or in Src-Yes-Fyn knockout cells. Caveolin-1 knockout cells exhibited a reduced transient anchorage time, suggesting the partial participation of caveolin-1. In contrast, a transmembrane protein, the cystic fibrosis transmembrane conductance regulator, exhibited transient anchorage that occurred without deliberately enhanced cross-linking; moreover, it was only slightly inhibited by cholesterol depletion or SFK inhibition and depended completely on the interaction of its PDZ-binding domain with the cytoskeletal adaptor EBP50. We propose that cross-linked GPIAPs become transiently anchored via a cholesterol-dependent SFK-regulatable linkage between a transmembrane cluster sensor and the cytoskeleton.
SUBMITTER: Chen Y
PROVIDER: S-EPMC2064508 | biostudies-literature | 2006 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA