Unknown

Dataset Information

0

Simpler mode of inheritance of transcriptional variation in male Drosophila melanogaster.


ABSTRACT: Sexual selection drives faster evolution in males. The X chromosome is potentially an important target for sexual selection, because hemizygosity in males permits accumulation of alleles, causing tradeoffs in fitness between sexes. Hemizygosity of the X could cause fundamentally different modes of inheritance between the sexes, with more additive variation in males and more nonadditive variation in females. Indeed, we find that genetic variation for the transcriptome is primarily additive in males but nonadditive in females. As expected, these differences are more pronounced on the X chromosome than the autosomes, but autosomal loci are also affected, possibly because of X-linked transcription factors. These differences may be of evolutionary significance because additive variation responds quickly to selection, whereas nonadditive genetic variation does not. Thus, hemizygosity of the X may underlie much of the faster male evolution of the transcriptome and potentially other phenotypes. Consistent with this prediction, genes that are additive in males and nonadditive in females are overrepresented among genes responding to selection for increased mating speed.

SUBMITTER: Wayne ML 

PROVIDER: S-EPMC2141819 | biostudies-literature | 2007 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Simpler mode of inheritance of transcriptional variation in male Drosophila melanogaster.

Wayne Marta L ML   Telonis-Scott Marina M   Bono Lisa M LM   Harshman Larry L   Kopp Artyom A   Nuzhdin Sergey V SV   McIntyre Lauren M LM  

Proceedings of the National Academy of Sciences of the United States of America 20071114 47


Sexual selection drives faster evolution in males. The X chromosome is potentially an important target for sexual selection, because hemizygosity in males permits accumulation of alleles, causing tradeoffs in fitness between sexes. Hemizygosity of the X could cause fundamentally different modes of inheritance between the sexes, with more additive variation in males and more nonadditive variation in females. Indeed, we find that genetic variation for the transcriptome is primarily additive in mal  ...[more]

Similar Datasets

| S-EPMC4881355 | biostudies-literature
| S-EPMC3728949 | biostudies-literature
| S-EPMC4261835 | biostudies-literature
| S-EPMC5147492 | biostudies-literature
| S-EPMC8727983 | biostudies-literature
| S-EPMC1461595 | biostudies-other
| S-EPMC3887542 | biostudies-other
| S-EPMC5117841 | biostudies-other
| S-EPMC4012493 | biostudies-literature
| S-EPMC2998325 | biostudies-literature