Phenotypic and transcriptomic analyses demonstrate interactions between the transcriptional regulators CtsR and Sigma B in Listeria monocytogenes.
Ontology highlight
ABSTRACT: Listeria monocytogenes sigma(B) positively regulates the transcription of class II stress response genes; CtsR negatively regulates class III stress response genes. To identify interactions between these two stress response systems, we constructed L. monocytogenes DeltactsR and DeltactsR DeltasigB strains, as well as a DeltactsR strain expressing ctsR in trans under the control of an IPTG (isopropyl-beta-d-thiogalactopyranoside)-inducible promoter. These strains, along with a parent and a DeltasigB strain, were assayed for motility, heat resistance, and invasion of human intestinal epithelial cells, as well as by whole-genome transcriptomic and quantitative real-time PCR analyses. Both DeltactsR and DeltactsR DeltasigB strains had significantly higher thermotolerances than the parent strain; however, full heat sensitivity was restored to the DeltactsR strain when ctsR was expressed in trans. Although log-phase DeltactsR was not reduced in its ability to infect human intestinal cells, the DeltactsR DeltasigB strain showed significantly lower invasion efficiency than either the parent strain or the DeltasigB strain, indicating that interactions between CtsR and sigma(B) contribute to invasiveness. Statistical analyses also confirmed interactions between the ctsR and the sigB null mutations in both heat resistance and invasion phenotypes. Microarray transcriptomic analyses and promoter searches identified (i) 42 CtsR-repressed genes, (ii) 22 genes with lower transcript levels in the DeltactsR strain, and (iii) at least 40 genes coregulated by both CtsR and sigma(B), including genes encoding proteins with confirmed or plausible roles in virulence and stress response. Our data demonstrate that interactions between CtsR and sigma(B) play an important role in L. monocytogenes stress resistance and virulence.
SUBMITTER: Hu Y
PROVIDER: S-EPMC2168136 | biostudies-literature | 2007 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA