Unknown

Dataset Information

0

M-TASSER: an algorithm for protein quaternary structure prediction.


ABSTRACT: In a cell, it has been estimated that each protein on average interacts with roughly 10 others, resulting in tens of thousands of proteins known or suspected to have interaction partners; of these, only a tiny fraction have solved protein structures. To partially address this problem, we have developed M-TASSER, a hierarchical method to predict protein quaternary structure from sequence that involves template identification by multimeric threading, followed by multimer model assembly and refinement. The final models are selected by structure clustering. M-TASSER has been tested on a benchmark set comprising 241 dimers having templates with weak sequence similarity and 246 without multimeric templates in the dimer library. Of the total of 207 targets predicted to interact as dimers, 165 (80%) were correctly assigned as interacting with a true positive rate of 68% and a false positive rate of 17%. The initial best template structures have an average root mean-square deviation to native of 5.3, 6.7, and 7.4 A for the monomer, interface, and dimer structures. The final model shows on average a root mean-square deviation improvement of 1.3, 1.3, and 1.5 A over the initial template structure for the monomer, interface, and dimer structures, with refinement evident for 87% of the cases. Thus, we have developed a promising approach to predict full-length quaternary structure for proteins that have weak sequence similarity to proteins of solved quaternary structure.

SUBMITTER: Chen H 

PROVIDER: S-EPMC2186260 | biostudies-literature | 2008 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

M-TASSER: an algorithm for protein quaternary structure prediction.

Chen Huiling H   Skolnick Jeffrey J  

Biophysical journal 20070928 3


In a cell, it has been estimated that each protein on average interacts with roughly 10 others, resulting in tens of thousands of proteins known or suspected to have interaction partners; of these, only a tiny fraction have solved protein structures. To partially address this problem, we have developed M-TASSER, a hierarchical method to predict protein quaternary structure from sequence that involves template identification by multimeric threading, followed by multimer model assembly and refinem  ...[more]

Similar Datasets

| S-EPMC8896630 | biostudies-literature
| S-EPMC4871818 | biostudies-literature
| S-EPMC2782770 | biostudies-literature
| S-EPMC4792809 | biostudies-literature
| S-EPMC4067246 | biostudies-literature
| S-EPMC2880412 | biostudies-literature
| S-EPMC4271559 | biostudies-literature
2017-08-10 | GSE102461 | GEO
| S-EPMC5005774 | biostudies-literature
| S-EPMC4489253 | biostudies-literature