Defining the directionality and quality of influenza virus-specific CD8+ T cell cross-reactivity in individuals infected with hepatitis C virus.
Ontology highlight
ABSTRACT: Cross-reactivity of murine and recently human CD8(+) T cells between different viral peptides, i.e., heterologous immunity, has been well characterized. However, the directionality and quality of these cross-reactions is critical in determining their biological importance. Herein we analyzed the response of human CD8(+) T cells that recognize both a hepatitis C virus peptide (HCV-NS3) and a peptide derived from the influenza neuraminidase protein (Flu-NA). To detect the cross-reactive CD8(+) T cells, we used peptide-MHC class I complexes (pMHCs) containing a new mutant form of MHC class I able to bind CD8 more strongly than normal MHC class I complexes. T cell responses against HCV-NS3 and Flu-NA peptide were undetectable in normal donors. In contrast, some responses against the Flu-NA peptide were identified in HCV(+) donors who showed strong HCV-NS3-specific reactivity. The Flu-NA peptide was a weak agonist for CD8(+) T cells in HCV(+) individuals on the basis of novel pMHCs and functional assays. These data support the idea of cross-reactivity between the 2 peptides, but indicate that reactivity toward the Flu-NA peptide is highly CD8-dependent and occurs predominantly after priming during HCV infection. Our findings indicate the utility of the novel pMHCs in dissecting cross-reactivity and suggest that cross-reactivity between HCV and influenza is relatively weak. Further studies are needed to relate affinity and functionality of cross-reactive T cells.
SUBMITTER: Kasprowicz V
PROVIDER: S-EPMC2214846 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA